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PREFACE

Teaching reinforced concrete design, carrying out research relevant to the behavior of
reinforced concrete members, as well as designing concrete structures motivated the
preparation of this book. The basic objective of this book is to furnish the reader with
the basic upderstanding of the mechanics and design of reinforced concrete. The
contents of the book conform to the latest edition of the Egyptian Code for the Design
and Construction of Concrete Structures ECP-203. The authors stfongly recommend

that the Code be utilized as a cdmpanion publication to this book.

The book is aimed at two different groups. First, by treating the material in a logical
and unified form, it is hoped that it can serve as a useful text for undergraduate and
_graduate student courses on reinforced concrete. Secondly, as a result of the continuing
activity in the design and construction of reinforced concrete structures, it will be of

value to practicing structural engineers.

Numerous illustrative examples are given, the solution of which has been supplied so
as to supplement the theoretical background and to familiarize the reader with the

steps involved in actual design problem solving.

In writing the book, the authors are conscious of a debt to many sources, to friends,
colleagues, and co-workers in the field. Finally, this is as good a place as any for the
authors to express their indebtedness to their honorable professors of Egypt, Canada
and the U.S.A. Their contributions in introducing the authors to the field will always .
be remembered with the deepest gratitude.

This volume covers the following topics

+ Reinforced Concrete Fundamentals
- » Design of Singly Reinforced Sections
» Design of Doubly Reinforced Sections
« Design of T-Beams
¢ Design for Shear
e Bond and Development length
« Design of Simple and Continuous Beams
e Truss Models for the Behavior of R/IC Beams
s Design for Torsion

It also includes appendices containing design aids.
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REINFORCED CONCRETE FUNDAMENTALS

Photo 1.1 Nile City Towers, Cairo-Egypt.

1.1 Introduction

Reinforced concrete is one of the most important available materials for
construction in Egypt and all over the world. It is used in almost all structures
including; buildings, bridges, retaining walls, tunnels, tanks, shells and even
ships. ‘



Concrete is a mixture of sand and gravel held together with a paste of cement
and water. Sometimes one or more admixture is added to change certain
characteristic of the concrete such as its workability, durability, and time of
hardening. Concrete has a high compressive strength and a very low tensile
strength.

Reinforced concrete is a combination of concrete and steel wherein the steel
reinforcement provides the tensile strength lacking in the concrete. Steel
reinforcement is also capable of resisting compression forces and is used in
columns as well as in other situations to be described later.

The tremendous success of reinforced concrete can be understood if its
numerous advantages are considered. These include the following:

e Itis a low maintenance material.

* It has great resistance to the action of fire provided that there is adequate
cover over-the reinforcing steel.

e A special nature of concrete is its ability to be cast in to a variety of
shapes from simple slabs, beams, and columns to great arches and shells.

e A lower grade of skilled labor is required for erection as compared to
other materials such as structural steel.

- e In most areas, concréte takes advantage of inexpensive local materials
(sand, gravel, and water) and requires a relatively small amount of cement
and reinforcing steel.

To use concrete successfully, the designer must be completely familiar with its
weak points and its strong ones. Among its disadvantages are the following:

o Concrete has a very low tensile strength, Vrequiring the use of tensile
reinforcing. E

e Forms are required to hold the concrete in place umtil it hardens
sufficiently. Formwork could be expensive.

* The properties of concrete could vary widely due to variations in its
proportioning and mixing. Furthermore, the placing and curing of concrete
is not as carefully controlled, as is the production of other materials such
as structural steel. ' ' :

e In general, reinforced concrete members are relatively large, as compared
to structural members, an important consideration for tall buildings and
long span bridges.

1.2 Reinforced Concrete Members

Reinforced concrete structures consist of a series of members. The first and the
second floors of the building shown in Fig. 1.1 have a slab-and-beam system, in
which the slab spans between beams, which in turn apply loads to the columns.
Again, the columns’ loads are applied to footings, which distribute the load over
a sufficient area of soil.

The structure shown in Fig 1.2 is a typical framed structure. The slab carries its
own weight, flooring and live loads. The load is then transferred to secondary
beams. The reactions of the secondary beams are transferred to the girders,
which in turn are supported by the columns. Finally, the columns’ loads are
applied to the footings, which distribute the load to the soil.

Photo 1.2 Reinforcement placement during construction



1.3 Reinforced Concrete

A.C. Beam

Roof Slab It is a well-known fact that plain concrete is strong in compression and very

weak in tension. The tensile strength of concrete is about one-tenth its
compressive strength. As a result, a plain concrete beam fails suddenly as soon
as the tension cracks start to develop. Therefore, reinforcing steel is added in the
tension zone to carry all the developed tensile stresses; this is called a reinforced

Floor Siab ‘concrete beam.

Concrete and steel work together beautifully in reinforced concrete structures.
The advantages of each material seem to compensate for the disadvantages of
the other. The great shortcoming of low concrete tensile strength is compensated
for by the high tensile strength of the steel. The tensile strength of the steel is
approximately equal to 100-140 times the tensile strength of the usual concrete
mix. Also, the two materials bond together very well with no slippage, and thus
act together as one unit in resisting the applied loads.

Siab on Grade

The disadvantage of steel is corrosion, but the concrete surrounding the
reinforcement provides an excellent protection. Moreover, the strength of the
exposed steel subjected to fire is close to .zero, but again the enclosure of the
Fig. 1.1 Slab and beam system in a building reinforcement in the concrete produces very satisfactory fire protection. Finally,

' ' concrete and steel work very well together in temperature changes because their
coefficients of thermal expansion are almost the same. The coefficient of
therma}6 expansion for steel is 6.5x10, while that for the concrete is about
5.5x10™.

R.C. Foolin;

Loads

1.4 Reinforced Concrete Behavior
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\\\ R TR R R .
X Girder T N\U Sec ondary beam ' _ The addition of steel reinforcement that bonds strongly to concrete produces a
. structural elements, e.g., slabs, beam, columns. Reinforcement should be placed
in the locations of anticipated tensile stresses and cracking areas as shown in Fig
bottom fibers where the tensile stresses develop (Fig. 1.3A). However, for a
cantilever, the main reinforcement is at the top of the beam at the location of the
"""""" the main reinforcement should be placed near the bottom fibers where the
positive moments exist and the other part is placed at the top fibers where the

T \\\\\\\\‘
: relatively ductile material capable of transmitting tension and suitable for any
—_— . 1.3. For example, the main reinforcement in a simple beam is placed at the
maximum negative moment (Fig.1.3B). Finally for a continuous beam; a part of
negative moments exist (Fig. 1.3C).

Footing .

Fig. 1.2 Typical reinforced concrete structural framing system
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1.5. Mechanical Properties of Concrete

1.5.1 Compressive Strength

Many factors affect the concrete compressive strength such as the water cement
ratio, the type of cement, aggregate properties, age of concrete, and time of
curing. The most important factor of all is the water cement ratio. The lower
water content with good workability leads to higher concrete compressive
strength. Increasihg the water cement ratio from 0.45 to 0.65 can decrease the
‘ compressive strength by 30-40 percent. Currently, high-range water-reducing
admixtures (super plasticizers) are available and they allow engineers to

A- Simple beam ' produce fluid concrete mixes with a sharply reduced amount of water.

In Egypt, the compressive strength of concrete is usually determined by loading
a 158 mm cube up to failure in uniaxial compression after 28 days of casting and

e Cracks is referred to as f.,. Additional details covering the preparation and testing of
; cubes are covered by the Egyptian Code for Design and Construction of
AR Concrete Structures (ECP-203) including correction factors that can be used if
e TUhE ) the tested specimen is not the same dimension or shape as the standard cube.
- Reinforcement This is the strength specified on the construction drawings and used in the
; . design calculations. -
-~ It should be mentioned that in other countries such as the United States and
. _ Canada, the compressive strength is measured by compression tests on 150 mm
B-Cantilever beam x 300 mm cylinders tested after 28 days of moist curing. In the case of using
specimens other than the standard cube, the ECP 203 gives the correction factors
shown in Table 1.1 to obtain the equivalent compressive strength of the standard
cube.
Cracks Reinforcement Cracks Table 1.1 Correction factors to obtain the equivalent f.,=f; X factor
- V Shape Size (mm) Correction factor
SR Cube 100 x100 x 100 0.97
%A:L{{:{:é:::::::‘—_‘ s===z 1 r . Cube (158x158X158) 0r(150x150x150) 1.00
\ Reinforcement \\ Cracks : : .
Cube 200 x 200 x 200 . 1 1.05
N Cube 300 x 300 x 300 1.12
Cylinder 100 x 200 1.20
C-Continuous beam : Cylinder 150 x 300 » ' 1.25
Cylinder 250 x 500 1.30
b Prism (150 x 150 x 300) or (158 x 158 x 316) 1.25
Prism (150 x 150 x 450) or (158 x 158 x 474) 1.3
Fig. 1.3 Reinforcement placement for different types of beams Prism 150 x 150 x 600 1.32




The ECP 203 states in clause (2.5.2) that a concrete strength of 18 N/mm®
should be used to quahfy for reinforced concrete category,15 N/mm” for plain
concrete, and 30 N/mm?” for prestressed concrete. Table 1.2 illustrates the grades
of reinforced concrete R/C -and prestressed concrete P/S as permitted by the
code.

Table 1.2 Grades of reinforced and prestressed concrete (N/mm”)

R/C 18 20 25 30 135 40 45

P/S 30 {35 {40 |45 50 |55 60

Field conditions are not the same as those in the laboratory, and the specified
28-days strength might not practically be achieved in the field unless almost
perfect mixture, vibration, and perfect curing conditions are present. As a result,
section 2-5-3 of the ECP 203 requires that the target concrete compressive
strength, f;, must exceed the characteristic strength f, by a safety margin (M).

The safety margin for a concrete mix design depends on the quality control of
the concrete plant and can range from 4 N/mm? to 15 N/mm?®. Table 1.3 (2-15 of
the Code) lists the values of the safety margin M according to the number of the
performed tests and the characteristic strength f. Therefore the targeted
concrete compressive strength £, is given by

i = Far M i (1.1)
Table 1.3 Value of the safety margin M (N/mm’ )

Statistical
data Safety margin M

Fow < 20 N/mm® 20-40 N/mm® 40-60 N/mm’

40 test data 5 5 _ .
or more 1.64 SD>4N/mm* | 1.64SD>6N/mm” |[1.64 SD > 75

N/mm?

less than 40 5 ,
test data Not less than 0.6 fz, | = 12 N/mm > 15 N/mm

One test data is an average of 3 cube tests
SD: Standard deviation

Since concrete is used mostly in compression, its compressive stress-strain curve
is of a prime interest. Figurel.4 shows a typical set of such curves obtained from
uniaxial compression test of cylinders. All curves have somewhat similar
characteristics. They consist of an initial relatively straight elastic portion in
which stresses and strains are closely proportional, then begin to curve to reach a
maximum value at a strain of 0.002 to 0.003. There is a descending branch after
the peak stress is reached. It can be noticed that the weaker grades of concrete
are less brittle than the stronger ones. Thus, they will take larger stains and
deformations before breaking.

70

60

\ e\

40 } /// \\

Ny g

Stress (N/mm?)

\
\

7

20

10 A

0 T -
0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004

Strain

Fig. 1.4 Typical concrete stress-strain curves

" For computational purposes mathematlcal representations of the stress-strain

curves of concrete in compression are available. For example, the stress-strain
curve shown in Fig.1.5 may be used. The curve consists of a parabola followed
bya slopmg line. Such a curve has been used widely in research purposes.
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Fig. 1.5 Modified Hognestad curve for concrete stress-strain relation

Photo 1.3 Milwaukee Art Museum, USA.
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1.5.2 Tensile strength ,

Experimental tests indicate that the tensile strength of concrete is highly variable
and ranges from about 8-12% of its compressive strength. The actual value

depends on the type of test and crack propagation pattern at failure.

Tensile strength is usually determined by the bending test (Fig. 1.6) or by the
split cylinder test (Fig 1.7). The ECP 203 states that the value of concrete
tensile strength can be taken from experimental tests as follows:

60% from the concrete tensile strength determined from bending test.

85% from the concrete tensile strength determined from split cylinder test.

In the bending test (modulus of rapture test), a plain concrete beam is loaded in
flexure up to failure as shown in Fig. 1.6. The flexure tensile strength or the
modulus of rupture f; is computed from the following equation

6 M
e (1.2)
P/2 P2
. -
v t —/:
¢ +

(4

Fig. 1.6 Bending tensile test
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The split cylinder test is performed on a 150x300 mm cylinder placed on its side
and loaded in compression along its length as shown in Fig. 1.7.A The stresses
along the diameter are nearly uniform tension perpendicular to the plan of
loading as shown in Fig. 1.7.b The splitting tensile strength f,is calculated from
the following expression

P
Ji
Sz Jo e
Ji
P
A: Test setup B: Force system C: Stresses on an element

Fig 1.7 Split cylinder test

The tensile strength computed using the modulus of rupture is always higher
than the split cylinder tension tests. The tensile strength of the concrete can be
determined using its compressive strength. The tensile strength does not
correlate well with the concrete compressive strength but rather with its square
root. The ECP-203 gives an expression for estimating the concrete tensile
_strength fz,-as a function of its compressive strength as follows:

R Y e eeeeeeeene (1.4)

1.5.3 Modulus of Elasticity

It is clear from the stress-strain curve of the concrete shown in Fig.1.3 that the
relation between the stress and the strain is not linear. Thus, the modulus of
elasticity changes from point to point. Furthermore, its value varies with
different concrete strengths, concrete age, type of loading, and the
characteristics of cement and aggregate. The initial tangent is sometimes used to
estimate the concrete modulus of elasticity, in which the slope of the stress-
strain curve of concrete at the origin is evaluated as shown in Fig. 1.8. The ECP-
203 gives the following formula for estimating the concrete modulus of
elasticity

E, = 8400, fo, coooereereeeeraeeses e eessnsssesesesseenees 1.5)

where f;, is the concrete compressive strength in N/mm?

The magnitude of the modulus of elasticity is required when calculating
deflection, evaluating bracing condition, and cracking of a structure.

Initial
tangent
modulus

Stress

Secant
modulus

Strain

Fig. 1.8 Initial tangent modulus of concrete ’
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1.5.4 Strength of Concrete Under Biaxial Loading ' The biaxial state may occur in beams as shown in Fig. 1.10 where the principle
' ' tensile and compressive stresses lead to biaxial tension compression state of

stress. The split cylinder test illustrated in Fig. 1.7C is a typical example of

biaxial state of stress, where the compressive stresses develop in the vertical

direction and tensile stresses develop in the horizontal direction. This is the main

In Fig. 1.9, all the stresses are normalized in terms of the uniaxial compressive reason that splitting tensile strength is less than flexural tensile strength.

strength f.,. The curve has three regions; biaxial compression-compression, :

biaxial tension-tension, biaxial tension-compression. ‘

Portions of many concrete members may be subjected to stresses in two
perpendicular directions (biaxial state). The strength of the concrete is affected
greatly by the applied stress in the perpendicular direction as shown in Fig. 1.9.

In the compression-compression zone, it can be seen that the compressive f Si
strength of the concrete can be increased by 20-25% when applying compressive
stress in the perpendicular direction.

. fi S
In the tension-tension zone, it is clear that the tensile strength of the concrete is
not affected by the presence of tension stresses in the normal direction. For
example, a lateral tension of about half the value of the uniaxial tensile strength
will reduce the compressive strength to 50% of the uniaxial compressive Fig. 1.10 Biaxial state of stress in beams
strength.
Jo |
1.4 Ja
1.2
) R |
feu f
1 / l — =
0.8 f’) - - ‘
0.6 - ! 1 ] -
0.4 T compréssion
.". ¢
0.2 - =
NIZ S - f
~o‘. v_// f(‘:u ,fcu
tension |fer | .
0.2 S - |
0.2 0 0.2 0.4 0.6 0.8 14 1.2 1.4
Fig. 1.9 Strength of concrete in biaxial stress - Photo 1.4 Typical reinforced concrete structure
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1.5.5 Shrinkage

As the concrete dries it shrinks in volume due to the excess water used in
corcrete mixing. The shortening of the concrete per unit length due to moisture
loss is called shrinkage strain. The magnitide of the shrinkage strain is a
function of the initial water content, the composition of the concrete and the
relative humidity of the surroundings. Shrinkage is also a function of member’s
size and shape. Drying shrinkage occurs as the moisture diffuses out of the
concrete. As a result, the exterior shrinks more rapidly than the interior. This
leads to tensile stresses in the outer skin of the concrete member and
compressive stresses in its interior. The rate of the shrinkage increases as the
exposed area to the volume increases.

The ECP-203 gives the following formula to estimate the virtual member
thickness

where B is the virtual member thickness, A, area of the cross section, P. is the
section perimeter subjected to shrmkage

Although shrinkage continues for many years as shown in Fig. 1.11,
approximately 90% of the ultimate shrinkage occurs during the first year.

almost flat curve

e

€shu

shrinkage strain

Esh

to Time

t=00

Fig. 1.11 Variation of shrinkage with time for a typical concrete mix
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Values of final shrinkage for ordinary concrete are generally of the order of
0.00016 to 0.00030 and can be taken from table 1.4.

Table 1.4 Values of shrinkage strain for concrete (x 107)

weather Dry weather Humid weather
condition Relative humidity =55% Relative humidity = 75%
Time by Virtual thickness B Virtual thickness B

days B>600 | 600<B>200| B<200 | B=600 | 600<B>200 | B<200
3-7 0.31 0.38 0.43 0.21 0.23 0.26
7-60 0.30 0.31 0.32 0.21 0.22 0.23
>60 0.28 0.25 0.19 0.20 0.19 0.16

1.5.6 Creep

When a reinforced concrete member is loaded, an initial deformation occurs as
shown in Fig. 1.12. Experimental studies show that this initial deformation
increases with time under constant loading. ‘

The total deformation is usually divided into two parts:(1)initial deformation (2)
a time dependent deformation named creep.

After the occurrence of the immediate deformation (point A, to point A), the
creep deformation starts rapidly (point A to pint B) and then continues at a much
lower rate till almost it becomes a flat curve at infinity. More than 75% of the
creep deformation occurs during the first year and 95% in the first five years. If
the load is removed at point B, immediate recovery occurs (point C), followed
by a time dependent recovery till point D (creep recovery). The member will
never recover all the developed deformation and there will be a non-recoverable
deformation called permanent deformation.

The creep deformations are within a range of one to three times ‘the
instantaneous elastic deformations. Creep causes an increase in the deflection
with time that may lead to undesirable deformation of the member. Thus, the
deflection must be investigated to ensure that the deformations are within the
allowable limits of the code.

17
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Fig. 1.12 Elastic and creep deformation of concrete

1.6 Reinforcing Steel
The most common types of reinforcing steel are bars and welded wire fabrics.
Deformed bars are the most widely used type and manufactured in diameters
from 10 mm to 40 mm. They are produced according to the Egyptian standards
- 262/1999. Bars are supplied in lengths up to 12m, however, longer bars may be
specially ordered. Reinforcing bars are available in four grades with a yield
strength of 240, 280, 360, and 400N/mm?2. The cost of steel having a yield stress
of 400 N/mm?2 is slightly higher than that of steel with a yield point of 240
N/mm2. However, the gain in strength and accordingly the reduction in the
required steel area is obvious. It should be mentioned that grade 400 N/mm?2 is
the highest steel grade allowed by the Code for reinforced concrete structures.

The ultimate tensile strength, the yield strength and the modulus of elasticity are
determined from the stress-strain curve of a specimen bar loaded in uniaxial .

tension up to failure. The modulus of elasticity of steel (the slozpe of the stress-

strain curve in the elastic region) is 200 GPa (200,000 N/mm®). The specified
strength used in design is based on the yield stress for mild steel, whereas for

18

high yield steel the strength is based on a specified proof stress of 0.2% as

shown in Fig. 1.13. ‘ .
The major disadvantage of using steel in beams and columns is corrosion. The

volume of the corroded steel bar is much greater than that of the original one.

The results are large outward pressure, which causes severe cracking and

spalling of the concrete cover. The ECP-203 requires the increase of concrete
cover in corrosive environments. Epoxy coated bars are a perfect solution for the
problem of corrosion of the reinforcement. They are expensive and need to be
handled very. carefully to protect the coating layer from damage. However, they
are not as efficient as uncoated bars in developing full bond with surrounding

concrete.

Stress

high grade steel

0.2% proof stress

_ start of strain hardening

\ _— mild steel

i
1
! yield plateau .
1
]
1

1
1]
1
1
i
]
1
1
1}
1

1
1

,'elastic range

1
‘
t
t
]
[
[
Il

:_’1_____ plastic range —/1,____, Strain

0.002

-
-~
-

Fig. 1.13 St;‘ess-Strain curve for mild and high grade steel
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1.7 Limit States Design Method

Members are designed with a capacity that is much greater than required to
support the anticipated set of loads. This extra capacity not only provides a
factor of safety against failure by an accidental overload or defective
construction but also limits the level of stress under service loads to control
deflection and cracking. The Egyptian code permits the use of two design
methods, namely, the allowable working stress design method and the ultimate
limit states design method. In the present time, the former is the most commonly
used in the design of reinforced concrete structures.

When a structure or a structural member becomes deficient for its planned use, it
is said to have reached a limit state. The limit states of concrete structures can be
divided into the following three groups:

A. Ultimate Limit states

These limit states are concerned with the failure of a structural member or the
whole structure. Such a failure should have a very low probability of occurrence
since it may lead to loss of human lives.

B. Serviceability limit states

These include all types that affect the functional use of the structure and can be
classified as:

¢ Deformation and Deflection Limit States: Excessive deflections may
be visually unacceptable and may lead to walls or partitions damage.

¢ Cracking Limit States: Excessive cracks may lead to leakage,
corrosion of the reinforcement, and deterioration of concrete.

» Vibration Limit States: Vertical vibration of floors or roofs may cause
unacceptable level of comfort for the users.

C. Stability Timit states

These include buckling of compression members, overturning, sliding,
formation of plastic hinge/mechanism, and general cases of instability. Also, in
some cases, localized failure of a member may cause the entire structure to
collapse. Such failure is called progressive failure and should be avoided.

1.8 Strength Reduction Factors

Strength reduction factors for both concrete and steel are introduced by the
Egyptian code to account for several factors. These factors include
simplifications, approximations, and small errors that may be encountered
during calculations. They also consider variations between the actual strength
and the design strength.

20

The strength reduction factors vary according to the applied compression force.
As the compression force increases, the strength reduction factor in turn
increases. One of the reasons for that, is the nature of the brittle failure that
accompanies the compression forces. The strength reduction factor for concrete
yc ranges from 1.73 for sections subjected to almost pure compression and 1.5
for sections subjected to pure bending. The strength reduction factor for steel
reinforcement ys ranges from 1.32 for sections subjected to compression and
1.15 for section subjected to pure bending.

For sections subjected to combined compression forces and bending (eccentric

compression sections) with at least 0.05t eccentricity, the ECP-203 gives the
following values for the strength reduction factors

. . e
where e is the eccentricity and  is the member thickness and ” >0.05

'z
WA ‘
3 :
‘; L \1-50 concrete strength reduction factor ye
g 132} : |
2 i
2 .15
*'; steel strength reduction factor ys
&
O .
3 s
@ :
; . e/t
0.05 050

.Fig. 1.11 Concrete and steel strength reduction factors

For other cases the strength reduction factors can be taken as

7. =1.5 | pure bending, shear and torsion
eccentric and concentric tensile forces

7, =1.15) bond and bearing
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for serviceability limit states the reduction factors can be taken as

y,=1.0
for calculation of cracking, deflection and deformation

7, =1.0
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Photo 1.5 Queensland, Australia, 322 meters 78 stories (2005).
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1.9 Classification of Loads

There are several types of loads that may act on a structure and can be
categorized as:

Dead Loads: These are constant in magnitude and fixed in location for the
lifetime of the structure. A major part of the dead loads results from the own
weight of the structure itself. The dead loads also include sand required for
leveling of the flooring, flooring material and brick walls.

Live loads depend mainly on the use of the structure. For buildings, live loads
are the results of occupants and furniture. In bridges, vehicle loads represent the
major live load. Their magnitude and location are variable. Live loads must be
placed in such a way to produce the maximum straining actions on the
structures. But rather by placing the live loads on the critical locations that cause
maximum stresses for that member.

Table 1.5 gives examples of the values of live load on some structures as
mentioned in the Egyptian Code for Calculation of loads on Structures.

Table 1.5 Live loads value according to building type (KN/m?).

Structure Type Location/usage Live load
. . L Rooms 2
Residential buildings - i
Balconies , stairs, kitchen ) 3
Offices 2.5
Office buildings Archives 5-10
Balconies and stairs 4
Patient rooms 2.5
Hospitals Surgery/lab 4 or more
Balconies and stairs 4 ‘
Classrooms 3
Labs 4 or more
. Sports centers 5
Schools and faculties
Book shelf area 10
Lecture rooms 4
Balconies and stairs 4
Gust rooms 2
Hotels
Public area/restaurants/stairs 4
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Seated area

-| Public area unseated

Cinemas and theaters -
' Balconies

Stairs and corridors .

Mdsque / church / Seated area A
Halls : Unseated area

Inaccessible horizontal flexible roof

[N

Roofs Inaccessible horizontal rigid roof

Accessible horiz‘on’gal roof

Pa;king area (small cars)

garages Buses

Garage corridor

For residential buildings with more than five stories, the live loads may be
reduced according to the Table 1.6 :

Table 1.6 Reduction of live load in mulﬁstory residential buildings

| Location of the floor Live load value

Roof , B P '

From 1 to 4 under the roof o 1P

Fifth floor underthe roof S 109P°

Sixth floor under the roof 08P -
Seventh 'ﬂodr under the roof 0.7P

Eighth floor under the roof ‘ , 0.6P

Ninth floor and more under the roof (_).5 P

~ Lateral loads These are thé loads resulting from wind pressure, earthquake
loads, soil pressure, and fluid pressure. In recent years, significant progress has
been made to accurately estimate the horizontal forces due to wind or
earthquake.

The ECP 203 states a series of load factors and load combination cases to be
used in designing reinforced concrete sections.

24

1.10 Load Combinations

e For members that are subjected to live loads and where the lateral loads
can be neglected, the ultimate factored loads U are computed from

U=TADH16L coeeeereereeeeeseeseeeessesssessssssssesssnaes (1.9)

where D are the workirig dead loads, and L are the working live loads
Alternatively if the live loads are the less than 75% of the dead load, the
following equatxon can be used

U =1.5(D 4 L) eeeerereeeemsereseressereessemssseeseeseenne (1.10)
If the member is subjected to earth or fluid pressure (E) the ultimate load is
given by »
U—-14D+16L+16E ........................................ (1.11)

In the case of lateral pressure in closed spaces such as tanks and small pools, the
ultimate load is taken from

U=14D+1.6 L+14E

e If the structure is subjected to wind loads W or earthquake loads S, the
ultimate load U is taken as the largest from the following two equations

U=0804D+16L+16W) woeereeeeereeccnecnnene (1.12)

U =102D 4+ @ LS wotioreoromeeseesieseossresensesisseessans (1.13)

Where o is a coefficient that takes into account the effect of live load that might
exists on the building during an earthquake and is taken as follows
» o=1/4in remdentlonal buildings. .
© » a=1/2in pubhc buildings and structures such as malls, schools, hospitals,
* .garages and theaters.
» =1 in silos, water tanks, and structures loaded with sustained live loads
such as public libraries, main storage areas and garages for public cars.

e Inload cases in which reduction of live loads shall lead to increasing the

value of maximum forces in some sections, the live load factor shall be
taken to 0.9.
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For cases in which the effects of the dead loads stabilize the structure, the Table 1.7 Load factors according to ECP 203
ultimate loads should be taken from the following set of equations

Condition Factored Load U
U =09D eooeeeeeeeeeeeeeeeeeeeeeeeeeseesee e s v (1.14)
U=14D+161L
U =09 D416 F eooeeeeeereeeeesessseesesrccessesennn (1.15)
U=15(D+L) L<0.75D
U =09 D+1.4 E (for tanks and pools) ................... (1.16) Basic
‘ U=09D
U=09D+13W e e ee e (1.17) '
U=09D+161L
U=09D+13S wooeeeeeeeeeeeeeeeeeseeoeseossossensssnons (1.18) '
U=-08(14D+1.6L%1.6W)
'Wind
U=09D+13W
U=112D+aL+S
Earthquake '

U =09D+§

U=14D+16L+16E
Earth ptessure

U=09D+16E

U=14D+1.6L+14E
Closed tanks

U=09D+14F

Settlement, creep, or |{U=08(1.4D+1.6L+1.6T)

temperature U=14D+16T

Photo 1.6: Opera Sydney in Australia U=14D+16L+16K
Dynamic loading

U=09D+16K

where D,L, W, S, E, T, K are the dead, live, wind, soil, earthquake, temperature
and dynamic loads respectively.
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Example 1.1

Using the load combinations of the ECP 203, determine the ultimate axial force
and bending moment combinations for the column CD at point C. The frame is
subjected to the following working loads
D=15 kN/m’ (uniform)

=30 kN/m'(uniform)
Wind load of 95 kN (may act in either direction)

— — = iiidlc:ds
R1 [ — ﬁ‘ﬁiil‘ﬁiﬁﬁ_g-
D
A

m A

Solution: _
since the structure is. indeterminate, a computer program was used to calculate
the axial and bending on the frame. The following figures summarize the results.
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L TE

-45.0 -4

Normal force (dead loads)

11—l
-33.83

I/ .
-90.0° -90.0

Normal force (live loads)

~46.'__ [“_

-+

17.64 - -17.64

Normal force (wind loads)

35.20 \\

-35.20

-35.20

Al 3520

3231

»

+15

1V 7

56

Bending moment (dead loads)

| -70.40 -
-70.40 \

/ﬂ -70.40

/”> +31

41

64.63

Bending moment (live loads)

524

/fl/r 52.4

i Bénding moment (wind loads)
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To compute the ultimate loads and according to the ECP-2003, five
combinations were used as shown in the following table.

Load combinations for member CD

Axial |bending |case |Equation Axial force |Bending
load {moment |No. combination |combination |
D [45.0 |-35.2 1 [U=14D+16L (207.0> | -161.9
L |-90.0 |-70.4 2 (U=08(14D+16L+16W) '18_8'2 @
w |-17.64|-52.4 3 |{U=08(14D+1.6L-16W) -143.1 62.5
4 ({U=09D+13W -63.4 -99.8
5 |U=09D-13W C76> |+364D

An example of the calculation for the axial force for the case of (D+LAW) is
given by

U=08[14D +1.6L+1.6W]
U =0.8[1.4(=45) +1.6 (~90) £1.6 (~17.64)]
U =-165.60 +22.60

=-188.2 kN and —143.0 kN

From the table, the maximum and minimum ultimate axial force on the column
is -207.0 and -17.6 respectively. The maximum and minimum ultimate bending
moment at C is —196.6 and +36.4.

It is very important to notice that the design should be carried out based on
straining actions resulting from the same load combination not the maximum
from each case. Thus, it is wrong to design the column for an axial compression
force of —207.0 and bending moment of —196.6. Instead, the section must be
designed to ‘withstand (an axial compression force of —207 and a bending
moment of —161.9) and (-axial -188.2, bending —196.6). In addition, it should be
designed for an axial force of —17.6 and a bending moment of +36.4.
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DESIGN OF SINGLY REINFORCED SECTIONS

Photo 2.1: Alamille Cartuja suspended bridge, Spain

2.1 Introduction

Until the late 1980s, nearly all reinforced concrete buildings in Egypt were
designed according to the working-stress design method. However, since 1989
the ultimate limit states design method has gained popularity and has been
adopted by the Egyptian Code for Design and Construction of Concrete
Structures. In this chapter, the basic design concepts of the ultimate limit states
design methods are discussed.
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2.2 Reinforced Concrete Beam Behavior

Consider that a reinforced concrete beam as the one shown in Fig. 2.1,
subjected to an increasing load that will cause the beam to fail. Several stages of
behavior can be clearly identified.

At low ' loads, below the cracking load, the whole of the concrete section is
effective ‘in resisting compression and tension stresses. In addition, since the
steel reinforcement deforms-the same amount as the concrete, it will contribute
in carrying the tension stresses. At this stage, the dlstnbuuons of strains and
stresses are linear over the cross secnon

uniformload
1 1 11 1T 1 1 1 T 1

’5@; ) ' . S " uncracked

section ~ strains »stresses
a: before cracking
service.load '

RN R

: concrete is neglected ] R R/ e _ 7 N.A
. at this zone |~ . cracks -
I A | A N

’ ’ ' A cracked

section

b: cracking stage, before yield, working load

© . ultimate load - - o
HEERER l’lv_l'_l o
i) N DN

.

/ , - B e F=f/115
/_@‘ o " cracked section & .
c: ultimate-and failure Stage < -, atultimate

'_Fi'g.i‘.l Reinforced concrete beam 'behavior at different stagés of loading» .

32

BE— — ]§ ______ = I

NA

When the load is furthier increased, the developed tensile stresses in the concrete
exceed its tensile strength and tension cracks start to develop. Most of these
cracks are so small that they are not noticeable with the naked eye. At the
location of the cracks, the concrete does not transmit any tension forces and steel
bars are placed in the tension zone to carry all the developed tensile forces
below the neutral axis. The neutral axis is an imaginary line that separates the
tension zone from the compression zone. Therefore, by definition the stress at
the neutral axis is equal to zero as shown in Fig. 2.1. Thns, the part of the
concrete’ below the neutral axis is completely neglected in the strength
calculations and the reinforcing steel is solely responsible for resisting the entire
tension force. '

At moderate loads (if the concrete stresses do not exceed approximately one-
third the concrete colnpress_ive strength), stresses and strains continue to be very
close to linear. This is called the working loads stage, which was the basis of the
working-stress design method. When the load is furthered increased, more
cracks are developed and the neutral axis is shifted towards the compression
Zone. Consequently, the compression and tension forces will increase and the
stlesses over the compres‘sl'on zone will become nonlinear. However, the strain
distribution over the cross sec"tlon is linear. This is called the ultimate stage. The
distribution of the stresses in the compression zone is of the same shape of the
concréte stress-strain c‘urve.‘ The steel stress f; in this stage reaches yielding
stress f; . For norrnally reinforced beams, the yielding load is about 90%-95% of
the ultimate load. ' '

At the ultimate stage, two types of failure can Abe, noticed. If the beam is
reinforced with a small amount of steel, ductile failure will occur. In this type of
failure, the steel yields ancl the concrete crushes after experiencing large
deflections and lots of cracks. On the other hand, if the beam is reinforced with a
large amount of steel, brittle failure will occur. The failure in this case is sudden
and occurs due to the crushing of concrete in the compression zone without
yielding of the steel and under relatively small deflections and cracks. This is
not a preferred mode of failure because 1t does not g1ve enough warning before
final collapse
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2.3 Flexure Theory of Reinforced Concrete

2.3.1 Basic Assumptions of the Flexure Theory

In order to analyze beams subjected to pure bending, certain assumptions have
to be established. These assumptions can be summarized as follows

I. Strain distribution is assumed to be linear. Thus, the strain at any point
is proportional to the distance from the neutral axis. This assumption
can also be stated as plane sections before bending remain plane after
bending.

2. The strain in the reinforcement is equal to the strain in the concrete at
the same level.

3. The tension force developed in the concrete is neglected. Thus, only
the compression force developed in the concrete is considered, and all
the tension force is carried by the reinforcement. '

4. The stresses in the concrete and steel can be calculated using the
idealized stress-strain curves for the concrete and steel after applying
the strength reduction factors. ’

5. An equivalent rectangular stress block may be used to simplify the
calculation of the concrete compression force.

The above assumptions are sufficient to allow one to calculate the moment
capacity of a beam. The first of these assumptions is the traditional assumption
made in the development of the beam theory. It has been proven valid as long as
the beam is not deep. The second assumption is necessary because the concrete
and reinforcement must act together to carry the load and it implies a perfect
bond between concrete and steel. The third assumption is obviously valid since
" the strength of concrete in tension is roughly 1/10 of the compressive strength
and the tensile force in the concrete below the neutral axis will not affect the
flexural capacity of the beam. The fourth and fifth assumptions will be discussed
in items 2.3.2 and 2.3.3.
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2.3.2 Stress-Strain Relationships

2.3.2.1 Concrete in Compression

The stress-strain curve for concrete is non-linear with a descending branch after
reaching the maximum stress as shown in Fig. 1.4, presented in Chapter 1. The
recorded maximum compressive stress in a real beam differs from that obtained .
in a cylinder or a cube test. Several studies have indicated that the ratio of the
maximum compression stress in beams or columns to the cylinder compressive
strength f,.“can be taken equal to 0.85 for most practical purposes. This accounts
for the size effect and the fact that the beam is subject to a sustained load while
the cylinder is tested during a short period. Furthermore, since the cylinder
strength f.” is about 0.80 of cube strength f;.,, the maximum value of the stress
strain curve for beams or columns is 0.85 x 0.80 f,= 0.67 f,,. For design
purposes, the previous value is divided by the concrete safety factor (y.=1.5 in
case of pure bending) to account for the uncertainties explained in section 2.3.
Hence the design compressive strength of the concrete as adopted by the
Egyptian Code (ECP 203) is 0.67 f../%=0.45 fu.

The Egyptian Code presents an idealization for the stress-strain curve in
compression. The first part of the curve is a parabolic curve up to a strain of
0.002 and the second part is a straight horizontal line up to a strain of 0.003, as
shown in Fig.2.2. Referring to Fig. 2.2, the equation of the concrete stress f. in
terms of the concrete strain (€;) can be expressed as:

P L . 2 for & <0002 -
f.=3"°10.002 |0.002 T 2.1.A)
f,,' for 0.002<¢, £0.003
where £+ = 267 fa
Y.
. 1067 fulte
b2 e
a :
) arabola i
7 :
8 :
5] i
5 Je :
= \
O i
O J
: i Concrete strain €,

g
0 0.001 . 0.002 0.003

Fig 2.2 ECP 203 idealized stress-strain curve for concrete
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2.3.2.2 Reinforcing Steel

The behavior of the steel reinforcement is idealized by the Egyptian code
(section 4.2.1.1)as an elastoplastic material as shown in Fig 2.3. The reinforcing
steel stress can be calculated using Eq. 2.1.B.

H/% |-
E tension
s
8 ' E.=200,000 N/mm’
@ HE .
S :
g gy lys Strain, &
compression :
1 H7%
Fig 2.3 Idealized stress-strain curve for steel
=&, XE hen £, <€,1Y,
o= b By when 8 SE Ve e (2.1.B)

fo=f1y., when € 2¢€.1y,

Photo 2.2 High grade steel Reinforcement
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2.3.3 The Equivalent Rectangular Stress Block

To compute the compression force resisted by concrete, the Egyptian Code
replaces the curved stress block shown in Fig 2.4C by an equivalent stress block
of an average intensity of 0.67 f./y. and a depth a= B ¢ as shown in Fig. 2.4D.
The magnitude and location of the force calculated using the equivalent stress
block should be equal to that of the curved one. '

compression

fre 0.67 f.,
=
0.003 1
<———.._QL Q
0.007
C
Q
Q
N
neutral axis
As
.’secﬂon‘
B: strain C: parabolic stress D: equivalent rectangular
distribution stress block

Fig. 2.4 Equivalent rectangular stress block calculation.

To calculate the depth “a” of the stress block, one equates the compression force

“obtained using the stress-strain curve of the Egyptian Code, shown in Fig. 2.4C,

to that using the equivalent stress block (Fig. 2.4D).
The total compression force (C=C+C;) obtained using the stress-strain curve of
the Egyptian Code can be calculated as follows:

C =bx(§xf;J et ettt 2.2)
C, —bx%xz—;xfr' —bx(gcxf:) ............................... (2.3)

c « 4dc .7 .
C=C‘4_-C2=§><bxﬁ. +—§—><bxf,. =§cxb><fp .................... 2.4)

The compression force obtained using the stress block C’ equals

C'=bXaX f =B eXBXF, cvreerinciiiieisrisennecennes 2.5)
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By definition, C must be equal to C’, thus solving Eq. 2.4 and Eq. 2.5 for {3 gives
7 .
=—=0.777
A 9

The code approximates the previous value to f=0.8, thus the rectangular stress
block depth (a=0.8 c). ‘

To find the location of the total compression force C’, take the moment of the
forces at point “0” and note that the C.G of the force F, is at 3/8 of the distance
(2/3c)

C'xk, c=C, (ix£)+czx(§x—2—c+—c—] .............................. 2.6)
2 3 8 3 3
: %cxbxﬁ.’xk, c=f3-xbxf('(%)+%cxbxf,_' [%c) ....................... 2.7

k;=0.404
The code simplifies the value of k; with B/2=0.4 (i.e. the resultant is at the
middle of the stress block) '

1

Photo 2.3 Metropolitan Government Building in Tokyo
38

2.4 Analysis of Singly Reinforced Sections

Concrete beams subjected to pure bending must resist both tensile and ‘compressive
stresses. However, concrete has very low tensile stresses, and therefore tension steel is
placed in these locations (below neutral axis) as shown Fig. 2.5. The most economic
solution is to place the steel bars as far as possible from the neutral axis except for the
concrete cover, which is normally assumed 50 mm from the external surface. '

Steel bars

compressed zone
: & Neutral axis

A cracked
steel bars ¥ zone
- ]
Padindind cover

concrete cover

cracked section A-A

Fig. 2.5 Reinforcement placement in reinforced concrete beam

The compressive stresses in concrete are replacéd by a uniform stress block as
suggested by the Egyptian Code (section 4.2.1.1.9) with distance “a” from the
concrete surface as shown in Fig. 2.6. '
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The analysis of the cross section is carried out by satisfying two requirements:

¢ Equilibrium
1. ZForces(intemai) Z Forces (external)

For sections subjected to pure bending, the external forces equal to
zero. This leads to

ZForces(mternai) =0 = T-C=0 = T=C .
2. > M, (internal) = 3" M, (external) (taken about any point in the section)

e Compatibility of Strains _

1. The strain at any pomt is proportional- to its distance from the
neutral axis. :

Therefore, if the design problem has more than two unknowns assumptions
have to be made to reduce them to exactly two. The stress in the tension steel is
assumed to be equal to the yield strength Jy- This assumption should be verified
after determining the neutral axis position. The equilibrium of the internal forces
is used to determine the stress block dlstance “a” as follows:

C=T... e (2.8)
067 f, ba A f,
R TR T — (2.9.A)

If the tension steel does not yield Eq. 2.9.A becomes

0.67 f. -,
67@“_" Y A (2.9.B)

L Y

. 067 fuba
: I L5
c aJ +—/ .
d Q
Neutral axis ~ _| ~ = o
o P .
’ o —— T=A,f/115
1 /A,

Fig. 2.6 Equilibrium of forces in a singly reinforced section
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Having determined the stress block distance a, the assumption of the tension
steel yielding can be verlﬁed using compatibility of strains as follows (c=a/0.8
and E&~200,000 N/mm? )

S T EXE it (Hook’s Law)
d-c
& =0.003 — ...l (compatlbihty of strains)
c
f, =600 <i'_ ................................................ (2.10)
c L.15

If the steel stress f; calculated by Eq. 2.10 exceed £;/1.15, then the assumption of
the yielding of the tension steel is valid (f;=f,/1.15) as used in Eq. 2.9.A.

The second equilibrium equation is used to determine the moment capacity of

" the section by equating the internal moment to the external applied moment M,.

The internal moment capacity is computed by taking the moment of the internal
forces about any point. Normally, this point-is taken at the resultant of the
compression force C to simplify the calculations. The internal moment in this
case is the product of the tension force multiplied by the distance to the
compression force. This distance is called the ]ever arm (d—a/2) as shown in Fig.
2.7.The equation for the moment is:

M = ;;(d.—‘e) et (2.11.A)

| FE— et S (2.11.B)
67 fu ’
15
i
‘ C
M, b
: >
= N NN IS A A
PR iR
/ I S
N -

T=A;f,/1.15 steel yields
T=A,f; steel does not yield

- Fig. 2.7 Strress and strain distributions of a singly reinforced section
41



2.5 Maximum Area of Steel of a Singly Reinforced
Section

The balanced failure occurs when the concrete strain reaches a value of 0.003 at

the same time that the steel reaches the yield strain divided by the reduction

factor (g,/ys) as shown in Fig. 2.8.

b 0.003 0.67 fuu/1.5
— ‘ I
Cb ap C
d
A _
o900 ' T

) le
fe,=e,/n l 0.003 |

Fig.2.8 Neutral axis position at the balanced condition

From similar triangles shown in Fig. 2.8, one can conclude that

£,
0.003+—*
" where ¢y, is the neutral axis at the balanced failure. The steel Young’s modulus
E; equals :

73

h

&, g1y,
- Substituting with steel Young’s modulus E; =200,000 N/mm” and y,=1.15 gives
¢, 690

g (2.14)

If ¢ < ¢, then the strain in the tension steel is greater than £/ys and that the
tension steel yields. To ensure ductile failure the ECP 203 requires that the value
of Cpae be limited to 2/3 cy. Substitution in Eq. 2.14 and referring to Fig. 2.9
" gives the following equation
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T o e e et eeterteraretansaratrtrasaanraanenarnans 2.15
d 690+f), ( )
a 368
L S PSP UPS S UPRRRPR PP 2.16
d 690 + f) ( )
0.67 fo, /1.5
b | 0.003 | f
Mumax 2 C
Coae = 3’ < Amax
d! OO [ Q
$
Asmax ~
o000

T=Agmax f/1.15

|Es>sy/1.15 |

strains forces

Fig. 2.9 Neutral axis position for calculating the maximum values
allowed by the code

The ratio of the reinforcement in the concrete section (p) is an indication to
show if the section is lightly reinforced or heavily reinforced and can be
expressed as:

After finding the maximum neutral axis position cmay, it is beneficial to compute
the maximum area of steel Agm. recommended by the code. To find the
maximum area of steel, apply the equilibrium equation (C=T) with neutral axis
at Cmax @s shown in Fig. 2.9.

067 .fru b A As.max f)

" = e (2.18)
Diving both sides by (b x d) gives
087 f, gy o1, e (019)

1.5 ' d ‘1.15
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substituting with Eq. 2.16 into Eq. 2.19 gives

189

Hox =600 1, + 17

0 O ..(2.20)

The ECP 203 limits the reinforcement ratio i to  fma given by Eq. 2.20 to
ensure ductile failure. Moreover, it is a good practice, from the economic point

of view, to limit the area of steel reinforcement in beams to only 0.5-0.7 um;x It

can be noticed that steel with smaller f, will have smaller yield strain €, leading
to larger neutral axis distance cp,y as shown in Table 2.1. Thus, the smaller the

steel yield strength, the larger.the maximum permissible steel 1atio Pmax as
shown in Fig. 2.10.

3.5

wN/mm‘
3.0
3B T~

25 ‘\\
2 25 \\
:;é; o fcu=m — \

15— ] -

0.5 _ - - » .

240 280 320 360 400
‘ ' £ N/mm®

Fig 2.10 Effect of f,, and £, on .

» It should be clear that if for a gwen section the neutral axis distance “c” is less
than neutral axis maximum value c,,,, then the steel is yielded, the actual area of

steel 4,, and the applied moment M, is less than code maximum. limits as
. indicated in Eq. 2.21.

_ f5"1.15
IFE<Sm phon| U<php 3 .
If <= LB T (2.21)
A <ASIM\
M <M

4 max
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Definingow = 1 fy

J cu

f,
B = s L oo (2.22)
N f(‘ll

Substituting with the value of i,y determined from Eq. 2.20 gi_ves

189

18 (2.23)
O =690+ 7, -
Table 2.1 Values of Cpnax/d, Hmaxs @max
Steel c/d | Cmadd | 2wadd | Ruae | Rlmax | s | O

240/350 0.74 0.50 040 |0214| 0.143 8.56x10™ f, | 0.205

280/450 | 071 | 0.48 | 038 |0208| 0139 |7.00x10%f, | 0.196

360/520 | 066 | 044 | 035 |0194| 0129 |5.00x10%f, | 0.180

400/600 | 063 | 0.42 | 034 |0.187| 0.125 |4.31x10"f, | 0.172.

450/520**{ 0.61 | 0.40 032 |0.180{ 0.120 3.65x10™ f, | 0.164

*  f,in N/mm’
*+  for welded mesh
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Maximum Moment Capacity

To determine the maximum moment for a singly reinforced section, one can
compute the moments of the tension force about the compression force (refer to
Fig. 2.9) at c=Cpax

A |

M, = Ao Sof g ) (2.24)

: 1.15 2

. : 15xM, .
Defining Ryax s R, = Tb"d‘;—

A .

o = D e /s (d_ﬂmx— ......................... (2.25)
f. bd 1.15 2

R =1.304”'L*f’—'(1—0.4““37“) ........................... (2.262)
R, =1304 (1—0.4%&) ............................. (2.26b)

Substituting with the value of [y calculated from Eq 2.20 gives

R, =236 (1—0.4ﬁ@- ................................... 2.27)
690+ 7, d

46

2.6 Balanced, Under, and Over Reinforced Sections

In general, an under-reinforced section is the one in which reinforcing steel
yields before the crushing of concrete. An over-reinforced section is the one in
which failure occurs due to the crushing of concrete in the compression zone
before the yielding of the steel. On the other hand, a balanced section is the one
in which yielding of steel and crushing of concrete occur simultaneously.

According to the analysis carried out in section 2.5, one can conclude that if the
section is reinforced with p less than w, (=1.5 pma) it is called “under
reinforced”. On the contrary, if the section is reinforced with p greater than p,
it is called “over reinforced”. The under-reinforced sections are preferred
because they fail in a ductile manner, in which the member will experience large
deflections, large strains, and wide cracks. This gives enough warning so that
repair can be performed on that member. On the other hand, over reinforced
sections will fail suddenly without enough warnings. Figure 2.11 gives the
strain distributions and the related values of the three sections

Under Reinforced
€<Cmax and (C<Cp) . Balanced condition
H<umax and (M<]»Lb) % C>Cmax and (C::cb)
fszfy/ 1.15 53 E P> HMmax and (uzub)
£ - f5=fy/ 1.15
o _- 4 :
Maximum Condition v R '
c=—cmax and (C'<<Cb) \< /’ \ Over Reinforced
. ?:?yr}rixx ;réd (P- va) - - . €>Crnax and (C.>Cb) .
) . /"’, v,’/’ > Himax and (H>Ho)
[ £.<g,/1.15 f<f/1.15
g=g,/1 13
£g/1.15
| £>€,/1.15

Fig 2.11 Strain distributions for over, under and balanced sections
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2.7 Minimum Area of Steel

In some cases, and mainly due to architectural considerations, the member could
be chosen with concrete dimensions bigger than those requifed by strength
calculations. Accordingly, the required area of steel could be very small. This
may lead to situations where the strength of the section using cracked section

analysis is less than the strength of the uncracked section computed using the
tensile strength of concrete. '

The failure of su_ch sections is brittle and wide cracks tend to develop. Thus, to
control cracks, to ensure ductility, and to avoid sudden failure in tension, the

Egyptian code (4.2.1.2.g) requires that the actual area of steel A, in any section
should be greater than Agyin given by: ' '

0.225

if L1,
- w pgyld
A,y =smallerof | 1, . S (2.29)

1.34

L 5

0.25

92 4 d(mitd steel)
but notless than 01(1)(5) o
222 b d(hich o
700 (high grade)

If £, is greater or equal to 25 N/mm? the term (0.225 \f,, /f, b d) is bigger than
(0.25% b d) and (0.15% b d). Thus, there is no need to check the third condition

in Eq. 2.29, if 0.225 \/f,: /f, <134, . The minimum area of steel in this case can
be simplified to: '

0.225 f .. bd
A, i =smaller of S :

1.34,

2.8 Factors Affecting Ultimate Strength

There are several factors that affect the ultimate strength of a beam subjected to
bending. These factors can be summarized as

e Yield strength of reinforcing steel, S
e Concrete compressive strength, fo

e Beam depth, d

e Beam width, b

e Reinforcement ratio, pL.

The effect of steel yield strength on ultimate strength is shown in Fig. 2.12A. It
is clear that steel yield strength has a big impact on its ultimate capacity.
Increasing the steel yield strength from 240 N/mm’ to 400 N/mm’ increases the
ultimate capacity by 55%. On the other hand, concrete compreéssive strength has
a little effect on the ultimate strength as shown in Fig. 2.12B. Changing concrete
compressive strength from 20 N/mm> to 40 N/mm’ increases the ultimate
strength by only 5%. :

Comparing Fig. 2.12C and Fig. 2.12D shows that increasing beam depth affects
the ultimate capacity more than increasing beam width. Increasing beam depth
from 500 mm to 1000 mm increases the capacity of the beam by almost three
times. Finally, increasing steel reinforcement ratio has a significant effect on the
ultimate capacity as illustrated in Fig. 2.12E.

Photo 2.4 Interior reading halls in the Library of Alexandria
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M, (kN.m)

Analysis Summary
In this type of problem all the cross section information is known including
8s 35 beam cross section dimensions, steel yield strength and concrete strength. It is
8 3 required to calculate the moment capacity M,.
ch2.5 - 25
/
a2 — B 2
§15 / — -é i -
] ' ‘1 ANALYSIS PROBLEM
Given b, t, A f,
05 05
o o Required : M,
240 280 320 %0 g 400 20 25 30 B g 40 Unknowns: a, M,
A-Effect of £, B-Effect of fuu
30 350 - / Procedure
%0 300 / o Step 1: Apply the equilibrium equation T=C to find the depth of
250 Eosol p the stress block, “a” and the neutral axis depth “c”
__E; / assuming that tension steel has yielded f;=f,/1.15.
20 =20 rd o Step 2: Check that tension steel has yielded (f; > f,/1.15) by
150 150 / ensuring the.c<c, or by using Eq.2.10.
100 L— / o Step 3: Compute the bending moment capacity M, by taking the
" 450 250 1350 450 100400 00 - 800 1000 ' moment about the concrete compression force.
b(mm) d(mm)
C-Effect of beam width (b) D-Effect of beam depth (d)
35-
3.0 +— » —
E 20 //
1.0
0.5
0.0
0.40 0.60 0.80 1.00 18 1.20
E-Effect of reinforcement ratio pt
Fig. 2.12 Parametric study on the ultimate moment capacity Photo 2.5 Cantilever box section in a reinforced concrete bridge
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Example 2.1

Determine whether the section shown in figure is under-or-over-
reinforced section and check code maximum permissible area of
steel for the following cases '

1. A;=500 mm
2. A,=1000 mm
3. A;=1500 mm>

4. A;=2000 mm’
£,,=25 N/mm’ , ;=360 N/mm’

“b=150
o
fan]
o
i
3
A
1lileecee

Soluﬂon

To determme whether the section is under—or—over—remforced one has to
calculate the balanced area of steel Ag,.:

From the code Table 41 or Table 2.1 in this text one can. get
Haax=5 X 107 £,=5 x 10 x 25= 0.0125 '
1 A —-,umxbd 00125x150x600 1125mm
but Crax= 2/3 cb of Agmax™ 2/3 Ag
Ay =13/2x% 1125=1687.5 mm’

0.225J25 o . »
Ay =smaller of |~ 360 0x000= BLmm® _ 281 mm? ..<d,.0k

1.3%(500) = 650 mm?*

Thus; all sections satisfy the minimum area steel requirements
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Case 1: A= 500 mm®>  under reinforced (A;<Ay)  Code limit safe (As<Asmax)
Case 2: A=~1000 mnf under reinforced (A<Aw) Code limit safe (As<Asmax)
Case 3: A=1500 mm’ under reinforced (As<Ag) Code limit unsafe (As>Asmax)

Case 4: A=2000 mum’ . over reinforced (As>As) ~ Code limit unsafe (As>Asmax)

Note 1: An alternative method for calculatmg the balanced area of steel is as
follows:

G _ 690 _ 690 _ 657 — i~ 0.657 x 600)=394.2 mm
d  690+f, 690+360 = ~ .

2,=0.8 ¢; = 0.8 (394.2) =315.36 mm |

0'67 f;’u b ah _ AS/’ JpJ’

1.5 1.15

0.67x25x150x 31536 A,, x360
15 LIS

Ay=1687.4 mm®
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Example 2.2

For the cross-section shown in figure: .

A- Determine the bending moment that the reinforced concrete section can carry
if Ae=1200 mm’. S

B- Determine the maximum area of steel that can be used in this section )

C- Determine the maximum moment that can be resisted by the section

£,=25 N/mm? and f,=400 N/mm’

250

el
£
8
1
o

As
Y |le o

Solution _
Stepl: Apply equilibrium equation T=C

Assume tension steel yields

067 f,ba _ 4, f,
1.5 1.15
0.67 x25x250x a _1200x400
1.5 1.15
a= 149.51 mm
< _ a/0.80 ~0311
d d

0.67 f., _0.67x25
15 15

I A =

d=600

g>ey1.15  T=A, £/1.15=1200x400/1.15

Stress and strain distribution in the

Step 2: Check f,

From Table 2.1 for f;=400N/mm’ — ¢,/d=0.63
Since ¢/d(0.311) < cy/d (0.63) then f;=f,/1.15

Since ¢/d (0.311)<cpay/d (0.42) then the beam satisfies code requirements

(Ac<Agmax and My, < Myna) as will be shown in step 4.1 and 4.2

Step 3: Calculate bending moment M,

A
M= Ay (d _E)
1.15 2

- 1_g9{0_;<;4_00(600_1_422§) =219.23x10° = 219.23 kN.m

Step 4.1: Calculate Maximum Area of steel Ag o«
From Table 2.1, p.= 4.3 1x104fcu
Hmae = 4.31x10 (25) =0.01077
Agmax = Pmax b d =0.01077 x 250 x 600
Agmax = 1616 mm®

Step 4.2: Calculate Maximum Moment M nax
From Table 2.1, Ry.= 0.187

Ry fubd® 0.187x25x250x 600

Mumax
; 1.5 1.5%x10°

=280.5 kN.m

Or, alternatively
From Table 2.1,  cpay/d =0.42

Amae . =0.8 x 0.42x 600 = 201.6 mm

W
M, - s Jy (1 O =1616x4060 600-2916) _ o0 6 kvm
- 1.15 2 ) L1I5x10 2 o

Final results My=219 KN.m, A; q=1616 mm’ and Muma=280.6 kKNom]
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Example 2.3
Determine whether the cross-section shown in the figure below can withstand an

applied bendmg moment of 80 kN.m.
=30 N/mm? and £,=240 N/mm’

150 .
fe——>}

t=500mm I

~600 mm’

Solution |
Stepl: Apply equilibrium equation T=C

Assume concrete cover of 50 mm

d' =¢—cover =500~ 50 450 min

0.67 fuba _4 1,

o

1.5 1.15
0.67x30x150xa _600x 240
1.5 1.15
a= 62.30 mm =a/0.8=77.8 mm
a/d = 0.138 > a/d)in(0.10) ....0k
0.67 x 30
1.5

P R Ay A B
| <
2 Aféoa . A% f,  600x240
. £y 7, 1.15

Stiress and strain distribution in the beam -

Step 2: Check £
From Table 2 — ¢,/d=0.74 and c¢pa,/d=0.5

¢/d =0.173 < ¢p/d (0.74) then f=£/1.15
Since ¢/d (0.173)<Cpa/d (0.50) then the beam satisfies code requirements

Step 3: Calculate bending moment M,

A
Mﬁ-—-’i(d—ﬁ)
1.15 2

W= 99—%? (450 —6—%—3—] 52.44x10° =52.44 kN.m

Since M(52.44 kN.m) is less than the applied moment (80 kN.m), the

" cross-section can not withstand the applied moment (unsafe).

Photo 2.6 Reinforced concrete bridge during construction
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Example 2.4
Calculate the maximum moment that the beam shown in figure can sustain.
Check whether the cross-section meets the code requirements regarding the

maximum area of steel.
The material properties are
=25 N/mm” and £,=400 N/mm’

200
je—>]
g
g
fa
)
G
o
A=1700 mm?
v, ® [ ]

Beam cross section

Solution
Stepl: Apply equilibrium equation T=C
067 f,ba_4 S,

15 115

0.67 x25x200x a _ 1700x 400
1.5 1.15

a=26476 mm  ¢=330.95 mm
a/d = 0.756 > a/d)uin(0.10) ....0k

.|'Step 2: Check f;
c/d =0.94 > cy/d (0.63) tension reinforcement does not yield, we have to
recalculate “a” thus fs equals '

£ =600 d—-c,= 600 0.8x350~a _ 168000-600xa
. (o . a

200

(=]
)
o
A=1700
L] ® At
€s<gy
Step 3: Re-calculate a
067 f, ba
AN Rl |
1‘5 s fS
0.67x25x200x a ~1700x 168000-600qa .
a

1.5

The above equation is a second order equation, solving for “a” gives

a=195.94 mm ¢=244.93mm = —c/d=0.69

£, 600222448 o0 4 N1 .| <22
244.93 : 1.15

-Sfep 4: Calculate bending moment M,
a
Mu— As -f: (d_-z‘)

M, =1700x2574 (350-1—922'—?3) =110.28x10° =110.28 kN.m

Note: Since the steel does not yield, the cross-section is considered over-
reinforced. Thus, the cross-section does not meet code requirements |

(c/d(0.69)>Crnar/d(0.42)).

58

59



Example 2.5

A 3 mm steel plate with a yield strength of 400 N/mm’ is glued to a concrete
beam reinforced with steel bars (416, £,=360 N/mm? ) as shown in figure.
Determine the bending moment that the reinforced concrete section can resist.
The concrete compressive strength of the beam is 20 N/mm’.

200
je——l
€
E|E
o |8
Qi
Lib
~ 4DI6
- I steel plate
_ t,=3 mm
150 mm -

Solution

Stepl: Apply equilibrium equation T=C

Area of the plate A;=3 x 150 =450 mm’
Area of the steel bars = 4016 = 804 mm’
C=T\+T;

Assﬁm.e that both the plate and steel bars yield

0.67f, ba_A S, A S

15 - 115 115
0.67%20x200x a _804x360 450400
1.5 115 1.15
a=228.48 mm , ¢ =% = 228480 85 6 mm
08 . 08 v A
“—‘ﬂ)?—" 0.003 - . :
‘ QT 7 g{ - C
. ol N
o — e v e ey PP, SIS LT TR R TR . N
@ . _
~804 .
T,=Af,/1.15
"YX X Es s
S ' L] ——=1Ty=A, f,/1.15
A,=450 €

Step 2: Check cnax/d
From the code cad/d for (f;=360 N/mm’ )=0.44

Coax =0.44x700=308 mm

C<Cpnax --.0.k (steel yields)
The depth of the plate d,= h+t,/2=750+3/2=751.5 mm

. ’ d
The stress in the plate f,, = 600 —*
. c

751.5-285.6

. ' _ 400 : ‘
f,, =600 3856 =978.78N /mm? >~LTS~(steel plate }.uelds'fsp =400/1.15) -

Step 3: Cdlcdlafe the ultimate moment M,

Take the moment about the concrete force C .

M,=T, (d ——a-)+T,-(dl, _3)
2) 2

szﬂ(d_ﬂ)+ﬁﬁ(d _9_)
“ 115 2) 115 U7 2

u=804?<360 700_228.48 +450><400 751‘5_228.48 = 24717 kN m
1.15 2 1.15 2

lﬁnal fesults M, =2417.7 KN.m|
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Example 2.6

A reinforced concrete beam has a cross section of concrete dimensions
b=200mm and d=450 mm. Calculate the moment capacity and the area of steel
using the idealized curves for concrete & steel, without applying safety factors
(ys=y=1) for the strain distribution shown in cases A&B. The idealized stress-
strain curve for the concrete and steel is given below. '

'200 ’ 200
l ‘ 0.0035 S 0.001
2
<
&0 ' ®—®{-5:0008
Case A Strain Case B Strain
W‘ ' A.
320 Nfmm?| 23 N/mm’
Steel‘ Concrete
0.001 ’ L - 0.002 0.0035
| Solution
Case A
From the strain distribution, the neutral axis depth “c” is determined as
follows: ' '

. 000 _g4p
d - 0.0035+0.005

¢=0.411x 450=185.29 mm

e Force in the steel

since £,(0.005) > 0.001 then from steel curve £;=320 N/mm’

¢ Force in the concrete

The force in the concrete equals the stressed area multiplied by the width &.
The concrete area can be divided into two parts as shown in the figure below

_0.002
0.0035

x 185.29 =105.88 mm

x1=185.29-105.88 =79.41 mm

C= C| +C2
200 mm T x1=79.4 23 N/mm?
o] 0.0035 | A
4 ‘ &)
2 0.002 / IC [
9 4=105.81 | -
T
— o~
S
A,
® O i\
L £=0.005 '

» Isometric for ,,
. Stress distribution "
C = 33—%05‘@ 200 = 243524 N ’ \

C,=23x79.41x 200 =365286 N
A f.=C+C,

A, (320) = 243524+365286

A=1902 mm’ o

Note that the C.G. of force C; is-at x/3

Y= 450-79.4-105.8/3=335.3 mm

Y,=450-79.4/2= 410.3 mm o .

M, =C, Y, +C, Y, = (243524 x 335.3 1365286 % 410.3)/10° =231.53 kKN.m
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Case B

c 0.001

d~ 0.001+0.0008
=(.5556 x 450 = 250 mm

e Force in the steel

since £4(0.0008) < 0.001 then find steel stress from graph

i 0.0008
/s =001
sForce in the concrete
The concrete force is equal to the compressed area of concrete
multiplied by the width b.
The stress in the concrete is a triangular shape
from the concrete curve with strain=0.001 — f=11.5 N/mm”

=0.5556

320 =256 N/ mm?®

A

A - 23 N/mm®
320 N/mm’®

256 N/mm’ : f=11.5 N/mm’

steel Concrete

>

0.0008\——0.001 0.0035

_11.5x250
2

0.001
0.002

C, 200 = 287500 N - 4, f.=C,

A, (256) =287500
Y= 450-250/3=366.667 mm
M,s=C,; x Y,=(287500x 366.667)/10° =105.41 kN.m

——A=1123 mm>

0.001

o=

250
c/3 f\]: G

Q.

(98]

d=450

£,~0.0008
200 Strain _ Forces
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Example 2.7

Find the ultimate moment capacity for the cross-section shown in the figure
below.

£,,=30 N/mm’ , and f,=360 N/mm’

d=500

eee| A~=1600 mm’

Solution
In this problem we have two unknowns a and M,

Step 1: Compute a. _
It should be noted that the code permits the use of the stress block for
trapezoidal sections '
The total compression force C equals to the concrete stress (0.67 f./1.5)
multiplied by the compressed area A.. Assume that tension steel has
yielded(f;=f,/1.15)
0671, A A S,
1.5 1.15
0.67x30xA, 1600x360
15 L5

A~=37378 mm’®

400

R ViE=

7
7

d

- 0-® € -
\ | A=1600 & Asfy1.15

[

$=400-2 a tan 10
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A =a 40(;“. = @ [400 - a x tan(10)]

37378 = 400 a— 0.176 2
Solving for a
a=97.65 mm

97.65
0.8

a/d = 0.195 > a/d)min(0.1) ....0k

c=2 = =122.06 mm
0.8

Step 2: Check £;

Since c/d (0.244) < cy/d (0.66), thus steel yields f=f,/1.15
Since ¢/d (0.244)<cqpa/d (0.44) then the beam satisfy code requirements

Step 3: Compute moment capacity, M,

The concrete force is divided into two parts. The first is the two small

triangles (C;) and the second is rectangular C,.

=22530N

C, =2xlxaxa tan(lO“)xPM
2 1.5

Taking moment about concrete force C2 (a/2 from the top)

The distarice between C; and C; = 7965 _ 79365 = 79:5

M,= 16010 ’;;60 (500 - 97565 ) +22530% 97:5 —226.3x10° = 226.35 kN .m

[Final Result: Mu=226.35 kN.m|
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Example 2.8

Find the ultimate moment capacity that this cross-section can resist. The
material properties for the beam are
£,,=20 N/mm?, and £,=400 N/mm’

180 T
200
1&—
400
A=1250 mm®
[ X X J s )
—<L—
i d i 3
T T T T

Solution.
Step 1: Compute a.

Assume that tension steel has yielded. Since we have two unknowns M,
and (a), solving the equilibrium equations gives

0.67xf, x4, _4 f,
1.5 1.15

0.67x20x 4, 1250x400
1.5 1.15

A=48670 mm®

Since A, is grater than (200 x 180), thus the distance a is bigger than 180
by the distance x; as follows

48670 =200x180+ 500 x,

Xy = 25.34 mm
a=180+ x, =205.34
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A 200 - 0.67x20/1.5
| | 0.67 ., /1.5 . e

C

e ——

&

Step 2: Check steel yleld stress, £

c=2a/0.8 "256 675 mm

d=180+200+400-50(cover)=730 mm

Since c/d(0.35)<cy/d (0.63), f—fyll 15

Since ¢/d(0.35)<cpmax/d (0 42) then the beam satisfy the code requirements

Sfep 3: Compute momen‘r capacity

Taking moment about the tension force
M, =C, (y',)+C2 (yz)

0.67 x20 200x180 "~ 180

C, = — =321.60 kN 1 =730-——=640m
' 15 1000 , : 0= =¢
0.67 x20 500x25.34 . ’
C, =tz 0x2534 _1132KN  —y,=730- 180—352i4_53733 mm

1.5 1000

M, =3216x 322 1113222722 _ 366,65 kN m
100 000

[Final Result: Mu=266.64 kKN.m]

Yiiy2
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2.9 Design of Singly Reinforced Sections by First
Principles -

To design a reinforced concrete section, the applied factored moment, concrete
strength and steel yield strength must be given. It is then requlred to calculate
the cross section unknowns mcludmg b, d and A

If the beam supports a wall then its width is usually chosen equal to the wall
width (either 120 mm or 250 mm). The width of the beams that do not support
walls may be reasonably assumed to meet architectural requirements. ‘The
assumption of the beam width leaves the designer with two unknowns (d, 4,). In
spite of having two equilibrium equations, one can not get these two unknowns.
This is due to the fact that the stress block depth (a) is also an unknown.

Two alternative procedures can be followed:

1. The thickness of the beam is assumed as a function of the span as will be
discussed in Chapter 6 in order to satisfy serviceability requirements such
as deflection (span/10). This procedure is usually followed by practicing
engineers. Apply the two equilibrium equations to obtain the remaining
unknowns (a, As)

2. The area of steel A can be assumed. A reasonable assumption for such an
area can be obtained by assuming that the lever arm equals-to 0.8d. Since
concrete compressive strength has a limited effect on the ultimate
capacity, a further simplification can be attained by assuming that fo, =25
N/mm?. Solving Eq: 2.9.A and 2.11.A for the area of steel 4, one can get

d, =011 Ml i e (231)

5,

The assumed A, is approx1mate1y 0. 9 1% of the cross sect10nal area (u=0.009-
0.01). After assuming the area of steel, one can apply the two equ111bnum
equations to calculate the remaining unknowns (a, d). The procedure for using
this approach is illustrated in example 2.10.
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Procedure
o  Stepl: Make the necessary assumptions to keep only two unknowns

e Assume the beam depth (d) or assume p=0.01.

e Or, assume area of steel, 4, =(0.1-0.11) M, b

y

e If“b”ismot given (assume b=120, 200, or 250 mm)

o Step?2: Apply equilibrium equation T=C to find the depth of the stress
block, “a” (Eq.2.9) '
o Step3: Take the mdment about the concrete force and calculate the
area of steel or the beam depth (Eq. 2.11)
o Step 4: Check minimum area of steel Agmin (Eq. 2.30)

o Step B: Check the code limits My max > Cmax/d, Asmax(Eq. 2.21)

Photo 2.7 Reinforcement placement in a slab-beam roof
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Example 2.9

A singly reinfor.ced.concrete beam with a width of 250 mm is subjected to an
ultimate moment of 270 kN.m. Find the beam depth and area of steel, then
Calculate Agnax and Mymax, fei=30 N/mm” and £,=400 N/mm”

Solution

In this example we have three unknowns a, d, As and we have only two
equilibrium equations, thus we have to assume one of the unknowns.

Step 1: Assumptions
L =431x107%x30=0.0129

Assume p<plmy ~ ——Assume p=0.01

A,=pbd=001%x250xd=25d ..o 1)

Step 2: Calculate a

067 fuba 4,7,
1.5 1.15

0.67 x30x250x a _ 2.5dx400

1.5 1.15
a=0.2596 d
a/d = 0.2596 > a/d)yin(0.1) ....ok
0.67 x30
250 1.5

|‘————l 0.003  p—]

As ’

Asf/1.15
l e e o | i
4 €€y

Calculation of As, d

S‘rep 3: Calculate d

A f. |
Muz__LLL(d_E)
1.15 2
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»— d=597 mm

270x10°= 25d400(d~0.2596d)
1.15 2
From Eq. (1)............. A, =2.5d =1493 mm’

Rounding d to the nearest 50mm, d=600 mm and A= 4¢22 (1520 mm?)

Step 4: Check Agnin
022530

400
A, o =smaller of =460 mm* <A, -0
1.3x1493 =1940 mm*

250 600 = 460 mm’*

STCP 5: Check Acmax. Mumax

From the code pima=4.31%10™ £, Cpae/d =0.42 and Ry, =0.187
Umax = 4.31x10™ (30) =0.01293

amx  =0.8 X 0.42x 600 = 201.6 mm

Agmax = Mmax b d =0.0129 x 250 x 600 =1939 mm” > As..; ..ok

A Fi -
M o= Ty (g G ) 1929%300 (5 20163 g4y
115 2 2

- L15x10°
OR
M, = Foa fud =018_7><30>;2560><6oo I
' L5 1.5x10 .
. 0.67 x30
. 250 1.5
’<__—__>|v 0.003 - }—=]
5 ~ C
E
<
ot o
28 =
o | 9.

>

= !

B
d-8ma/2

1 S5 AmfLIs
LS ’

_Calculation of M.«

k

Example 2.10 :
A singly reinforced concrete beam is subjected to an ultimate moment of 330
kN.m. Find the beam depth and area of steel.

The material properties are:
=25 N/mm? and £=280 N/mm?

-Solution

Step 1: Assump‘hons

In this example we have four unknowns b, a, d, As and we have only two
equilibrium equations, thus we shall assume two (b, As)
Assume b=200 mm

) 6
4 =011 |Mb :o.-n,’w =1689 mm”
/, 280

0.67 f,,

Step 2: Calculate a

067 f. ba A f,
15 1.15

0.67x25x200xa _ - 1689% 280
1.5 1.15

a=184.12 mm




Step 3: Calculate d

A
Mu=—’£(d _a
1.15 2

330x10°=

1689 x 280 d- 184.12
1.15 2

) — d=895 mm
a/d = 0.205 > a/d)in(0.1) ....0k

Use d=900 mm t=950 mm and A~ 1689 mm’

Step 4: Check Aspin
0.2254/25
=222 200% 900 = 2
280 X 719 mm

A:min = smaller Of =719 mm? <As .0k

1.3x1689 = 2195 mm?>

Step 5: Check Asmm‘u Mimax

Since ¢/d(0.26) < Cam/d (0.48) then As<Agmax and M,<Mumax

IFinal design d=900 mm, t=950 mm and A=1689 mm’]

200
[
(e (=)
w) N
@ 5
o0 e = 2
°ee 1 6®20 (A=1885 mm’)

Final design

Note _
1. ‘The reinforcement is arranged in two rows.
2. The depth of the beam is measured from the c.g of the reinforcement.

2.10 Design of Singly Reinforced Sections Using

Curves _

Design aids are very useful tools in designing reinforced concrete sections. To
prepare the design aids, equilibrium equations and compatibility of strains are
utilized. There are several charts that can be used in the design process. We
shall present several design charts followed by design examples to explain how
to use such design aids.

2.10.1 Design Charts (R-u) _
Applying the equilibrium equation for the forces shown in Fig. 2.13

0.67 f, ba _ 4, f,
1.5 1.15
Dividing by (b x d) and noting that p=A¢/(b .d)

15
a_ 1SS, oaeP T (232)
d 0.67x1.15x f,

cu

Taking moments about the concrete force C

A
M, == Jy (d —3) .................................................... (2.33)
15\ 2
Dividing Eq. 2.33 by b x d* gives . _
M, =i‘ﬁ(1~11) ............. e e (2.34)
bd® 115\ 24d : ,

Substituting with Eq. 2.32 in Eq. 2.34 givés

R, =ﬂ“7=fﬁ(1—o.9734 -’f—f—’)\ ....... reeernreeeraeeneeees e (2.35)
bd> 115 S -
b - 067 fn
s
/e
R I e (i SRR :
A, A
i o e 0 o A /LIS

EPEVIREE

Fie. 2.13 Equilibrium of forces in reé_tah‘gular sections '



Substituting different values of p in the Eq. 2.35, the relation between Ry, p can
be established. Fig. 2.14 shows an example of such curves. Appendix A
contains R-u design charts.

f,=40MPa

faH0MPa

3
&
"l

f=39MPa

: 12340 /
» 45 : Y / f=35 MPa P

40- : 2

o E
5

N
N

364

304

25§

204

154

A -ﬁxbxdi——ﬁ‘——

104 = :
0 f /LS

05§

Kmin \\
LN

00 i

00 02 04 06 08 10 12 14 16 18 20 22 24 26 28 30 32 34 3B
. it :

Fig. 2.14 Example of R~ design curve

2.10.2 Design Chart (R-0)
Defining ® as
1,

feu ,
Subsisting the value of ® in Eq. 2.32 gives

w=p

219468
d
Dividing Eq. 2.35 by f. gives

Rie M #L G gopatdey (2.37)

fubd® L15f, f

Rl =1—“1’g(1 —0.9734 @) eeerererennes [ (2.38)

Substituting different values of ® in the Eq. 2.38, the relation between Rl,®
can be established. The curve should be terminatéd at the value of ®max listed in
Table 2.1 and Eq. 2.23. Fig. 2.15 shows an example of such curves. Appendix A
contains R1-® design chart.

0'15 L fof fy=240 N/t .
L 014 S Een 12 i i etk etk sl i it S B S

013 et

0.12 i . : //; i

0.11 y

0.10 - - - e

0.09 i 2
= I ! //
¥0.08

007
. 1 R R /
0.06 1 A

005 F—— yat
004 1 /_/
003 + /’ -
0.02 ',/
001 +

z
EED

forl fy=4Q0N/mm
A fy=360 N/myrd
.. fyfz%p.ml Y TS VS N U

Denex

002 -004 006 008 010 012 014 0.16 018 020 022
: . ) o : i

Fig. 2.15 Example of Rl1-o design vcurve



Summary

The following table illustrates the use of the charts depending on the example
information:

d ls given, A, required A, is given, d required
1. ~ Calculate R1 or R, or K, 1. Calculate por o
Use charts (R-o or R-p 2. Use the charts to determine
or K,-p) to determine p or ® RlorR,orK,
3. Calculate A 3. Calculate d
4. Check Agmin and Agpa 4. Check Agmin and Agpax

A,, d required
1. Assume R1=1/2R s (R=0.07)
2. Use the charts to determine ®
3. Calculate d, A

2=————M“ A, =wb dfi
Sa b R1 f

4. Check Agnin and Agnax

Note 1: Each curve terminates at the value of the maximum reinforcement

ratio pmax OT ‘Omax- Thus, there is no need to check the maximum
moment or the maximum area of steel as long as the point is less than
the maximum limit.

Note 2: It should be noted that beam depth needs to be increased if the point
is located outside the curve as shown in Fig. 2.16.

RI>R1qax

R by _ Ruma

Dmax o HMumin - Himax

Fig. 2.16 Cases where the beam depth need to be increased

Note 3: For small values of R1(<0.04), © can be approximated by ©=1.2 R1.

Note 4: If the both (4, and d) are not given, consider assuming p=0.008-0.01
and proceed as the previous procedure

Note 5: It should be noted that we have to check Agmin using Eq. 2.30 even if
>Hain 01 the curve, because the curve tests only the value of 1.1/,

Note 6: Since sometimes the beam depth is not known, a reasonable

estimation for “d” can be concluded by assuming a=0.1 d and

1=0.01 and substituting in Eq. 2.34. gives: o

Note 7: The design curves can be presented in a tabular form (R,-p) or (R,-
K,) as given in appendix A

]

Photo 2.8 Trammell Crow Center (209m ,50 stories)



Example 2.11

A reinforced concrete cross-section is subjected to a bendmg moment of a
factored value of 400 kN.m. The beam has a width of 200mm. It is required to
design the cross section usmg the (R1-0) curve, knowmg that £,,=30 N/mm”.

and £=280 N/mm?® .

| Solution.
Step 1: Assume p and get R1
Since both (4, and d) are not given, then ——> assume p=0.01

@ =p£=0.01%=0.0933

-f;ﬂ
From the chart with ®=0.0933, R1=0.074

Rigax

R1=0.074

©=0.093 . Omax

Step 2: Compute d A

400x10°
30x200xd>.

" d=949 mm

0.074=

A, =0.0933x200x 04929 _ 1899 mm?
/ _ 280 _

Take d=950 mm, t=1000mm

Step 3: Check Agmin, Asmax

0.225
o bd = 0'225\/3‘_0 x200%950 = 836.]

A, =smaller of 1y 280 : =836mm’ <A,..0k

smin

1.34, =1.3x1899 = 2469

Since Ry<R| max thus As<Agmax ++e--- ok.

[Final Result: d=950 mm, t=1000 mm, A,=1899 mm’|

200

1000

ee oo A-1899mm’

Final design




Example 2.12

A reinforced concrete cross-section is subjected to a bending moment of a
factored value of 350 kN.m. The beam has a width of 250mm. It is required to

design the cross section using the (Ru-p) curve, knowing that £,=25 N/mm’
and £=400 N/mm? .

Solution

Step 1: Assume p and get R,
Since both (4; and d) is not given, then,
Assume R=12 R.x m—— R=24

From the curve p= 0.8% (0‘008)

Rumax TTTTTETTTETTTT }-S ::‘:4-%)"' -_ {;u=25

R=24 2\/)—/

=0.80%  Mmax
Step 2: Compute d, A ’

R, =
bd
6
242 350X10 =763 mm
250% d

A, = pbd=0.008x%250x763=1526 mm® =15.26 cm

Take d=800 mm, t=850 mm ' A

Note: it is more economical to use the calculated depth (763 mm) not the
chosen depth (800 mm) to compute A,

Step 3: Check Aqnin, Asmax

0.225\[f., w ozsz_
A, . =smaller of 7,

5 min

x250x800 =563 N
=563 mm* <A,....... 0k

1.34, =1.3x1526 =1983

Since t < Pmaxs thits Ac<Agmax.-...-.:-0.k

Example 2.13

A reinforced concrete cross-section is subjected to a bending moment of a
factored value of 290 kN.m. The beam has a width of 150mm. It is required to
design the cross section usmg the (R,k,) table, knowing that the material
properties are f,=40 N/mm* and f=360 N/mm

Solution
Stepl: Assume p and get K,

Assume p= 0.8% (0.008)
From the table (Ry-k,) with £,=360 N/mm’ determine K,=0.655

Step 2: Compute d, A

-
d=K, JM“ ;0.655,’@(—10— =910.74 mm
b 150 »

A =ubd= 0.008x150 x910.74 = 1093 mm?* =10.93 cm®
d=950 mm t=1000 mm

Note: use the calculated depth (910 mm) to calculate 4
S‘I‘ep 3: Check Agnin. Asmax

0.225\/f .. bd = 0.225.(f,

% %150x950=563 . ., .
A, =smaller of 7, 60 T =563cm” <A, e ok

smin

1.34, =1.3x1093=1421

Since B < Mmax, thus Ac<Agmax. .. ov-e- ok

[Final Result: 1000 mm, A,=1093 mm’|

150

1000

® 08| 41093 mm’

Final design




Example 2.14

Redesign the beam in example 2.9 using the design aids (R,-p) and
assuming that d=600 mm

Solution
Step 1: Estimate A,
Calculate R,
M, 270x10° _

““bd’ 250x600°
From the chart (f,=400 N/mm’ and f, =30 N/mm’ )with R,=3—p=0.99

A, =,ubd=?'T909— 250% 600 = 1485 mm?

Compare the previous value with A obtained from example 2.9 (1493 mm?)

L e | \ _____
—

Step 2: Minimum and Maximum, A,
Since R, is less than the Ry, value in the curve, thus Ac<Agmax

0225\f o, _ 022530
5 min =smaller Of f ¥ N 400

1.34, =1.3x1485=1930

x250x 600 =462

A =462 mm’ <A,......0k

Example 2.15
Determine the value of the ultimate load (P,) that can be applied to the

beam shown in the figure using design aids.
=25 N/mm® and =360 N/mm® (Neglect own weight of the beam)

1200 5

d=700mm

eoes| A=1245 mm’

Solution
A=w Jo bd
"
1245=w 2 200700
360
®=0.128
From the chart (R1-0) with ©®=0.128 get R1=0.097

3 T

R1=0.097

©=0.128 Mmax
M

Rl = u

fubd®

M, x10°

0.097 = ——+
25x 200 700

M, =237.65 kKN.m.

- . . BxL
The maximum moment occurs at midspan and equals toM , = “:
237.65= 5—255

P ,=176.04 k.N.




DOUBLY REINFORCED BEAMS AND T-BEAMS

B EERR )

Photo 3.1 Edgar J. Kaufmann House (Falling-water), Frank
Lloyd Wright 1936, (6 m cantilever)

3.1 Doubly Reinforced Sections
3.11 Introduction

Doubly reinforced sections are those that include both tension and compression

steel reinforcement. In most. cases, they become necessary when architectural
requirements restrict the beam depth.

From the economic point of view, it is recommended to design the member as a
singly reinforced section with tension reinforcement only. If the required area of
the tension steel exceeds the maximum area of steel recommended by the code,



compression steel should be added. Adding compression steel reinforcement
may change the mode of failure from compression failure to tension failure or
may change the section status from over-reinforced to under-reinforced section.
Compression steel also reduces long-term deflection and increases beam
ductility. For economic considerations, the Egyptian code recommends limiting
the compression reinforcement amount to only 40% percent of the tension steel.

The compression area of steel 4 is usually expressed as a ratio from the tension
area of steel 4 as follows: ’ '

where o usually ranges from 0.1 to 0.4.

Despite all of the aforementioned benefits, adding compression steel in
reinforced concrete beams will not increase the section moment capacity
significantly. This is because the tension force is constant (T = 4, f,/1.15) and
the lever arm between the tension force and the resultant of the two compressive
forces (in concrete and in steel) is slightly affected by adding compression
reinforcement. This can be noticed by examining Fig. 3.1. In this figure, the
vertical axis gives the percentage increase in the capacity of a doubly reinforced
section as compared to an identical one without compression steel.

The use of compression steel is more beneficial when the tension steel provided
is near the maximum allowed percentage of steel fi,. Adding compression
reinforcement with o=0.6 will increase the beam capacity by 6 to 13 percent for
beams with p=0.8% and p= fimqx respectively. ‘

14

£=360 : ‘ P=fma(1-25%

10 +— / .
| : / />u=o.s%

0 0.1 0.2 . 0.3_ 0.4 0.5 0.6
oa=A YA

Fig. 3.1 Effect of compression reinforcement on moment capacity

-

Mud/Mu (%)

3.1.2 Analysis of Doubly Reinforced Sections
Case A: compression steel yields

The'equilibrium of forces and strain compatibility shall be applied to analyze the
section. The strain distributions and the internal forces in beams with
compression reinforcement are shown in Fig. 3.2. The compressive force is the
sum of two parts; i) concrete force C,, and ii) compression steel force C,.

4d’ 0.67 £, /1.5
0.003 :
vy - Ce= AL £/1.15
1 - g'>e,/1.15 - a7 d&
/ / 0.67fuba |
<15
Q
~
A, A
XX
g>g,/1.15 T=A.f,/1.15
b

Fig. 3.2 Analysis of sections with compression reinforcement (steel yields)

It will be assgmed that both the compression and the tension steel have yielded. The
stress block distance “a” is calculated utilizing the equilibrium of forces as follows

Compression force = Tension force........coceceenvercecruanne. (3.2)
CeF Ce= T ot (33)

067 f.ba A f, Af
+ L= L eteerereai e e ann e araaeas 3.4)

1.5 .15 1.15

The compression steel stress /7 is checked using compatibility of strains as follows:
. -d’ a-084d'
£ =0003 =% =00
- 03 T e (3.5)
fr=glxE, =600°=% 600 22088 (3.6)
. c a

If the value of f; “in Eq. 3.6 is less than £,/1.15, the analysis should be carried out
acco_rding to the procedure outlined in case B. On the other hand, if £;’in Eq.
3.6. is larger than £,/ 1.15, the assumption of yielding of compression-_steel is
valid and the moment capacity can be determined by taking the moment of the
forces around the concrete force as follows:

As f, a Al f. a
M =7 —_— sIrle g
AT (d 2)+ 1.15(2 d) .................................... 3.7)



Case B: compression steel does not yield

Applying the equilibrium condition and referring to Fig. 3.3, one gets:

A .
067/uba o Ale i (3.8)

1.5 R B &

0.67 fua /1.5 ,
A, |4 . 0.003 — ' @/2-d

_{ ' / C= A'sTs L

g's<gy/1.15 o

c .

t ® / o OSfaba ‘
- —

d 1.5
o
&
: °
As
bt L ea>g/115 T=A,£/1.15
b
Fig. 3.3 Analysis of sections with compression reinforcement
(steel does not vield)
| Substituting the expression of /% from Eq. 3.6 into Eq. 3.8 gives:
: A,
044661, ba+ 4 600 (@=08d) ALy o (3.9)

a 1.15

This can be reduced to a second order equation in terms of the stress block
distance (a), given by

0.4466 f,, ba® —(A, f,/1.15-600x 4; ) a—4804, d'=0

Solution of Eq. 3.10 gives the value of “a”. The moment capacity can be
determined by taking the moment around the concrete force as follows:

O A T €S B 3.11
AL a2 o1

Note that the positive sign indicates that the compression steel force Cs is
assumed to be located above the concrete compression force Ce.

Simplified Approach for the Analysis of Doubly Reinforced
Sections

The previous procedure indicates that the compression steel strain €'s is affected

" by the distance d' (refer to Fig: 3.3). The compression steel yields if the distance

d’ is small compared to the neutral axis distance as presented by Eq. 3.6.

Setting f's = f/1.15, one can solve Eq. 3.6 for the maxlmum d’ that ensures
yielding of the compression reinforcement.

wﬂ:m( ’ f") e (3.12)
a 690

If the value of the actual d'/a is less than theb\'/alue d'ax/2, the compression steel

will yield and f% equals to' f/1.15. Table 3.1 lists the values of d' /2 that
ensures yielding.

The ECP 203 presents a simplified approach for such an analysis. It permits
assuming that the compression steel yields if the ratio of the compression steel
depth d' to tension steel depth d is less than the values given in Table 3.1,

~ otherwise a compatibility of strains (Eq.3.6) has to be utilized.

Table 3.1 Values of (d') to ensure yielding of compression steel

f,(N/mm?’) | 240 | 280 360 400
d'/d at c<Crax(code values) <0.20 <020 | <015 <0.10
d'/d at c=Cruax (ma’“ values) | 326 <0.285 <0.210 £0.176
 d'/a at c<Cruax <0815 <074 <0.60 <0525




The simplified approach for the analysis of a doubly reinforced section can be
summarized in the following steps

Given  :fu,f, b,d%d, A;and 4
Required :M,

Case A: check if d'/d< code limits (Table 3.1), then compression steel yields.
o Step I calculate “a” using Eq. 3.4.

e Step 2 calculate M, using Eq. 3.7.

Case B: check if d'/d> code limits (Table 3.1), then compression steel does not yield

e Step 1 calculate “a” using Eq. 3.8 or Eq. 3.10.

e Step 2 calculate M, using Eq. 3.11.

3.1.3 Maximum Area of Steel for Doubly Reinforced
Sections o

To ensure ductile failure of a doubly reinforced section, the neutral axis distance

Crmax 18 limited to that of the singly reinforced section as given in Table 4-1 in the

code or Table 2.1 given in Chapter 2. Thus, increasing the tension reinforcement

above Agmax is allowed by the code only by adding compression reinforcement

that keeps the same neutral axis distance as shown in Fig. 3.4.L

A doubly reinforced section can be looked at as composed of a singly reinforced
concrete section and a steel section. The singly reinforced section (Fig. 3.4.1I)
has an area of steel equal to A max obtained from Table 2.1, and the steel section
has the same amount of top and bottom steel of area 4§ (Fig 3.4.1I). Thus, the
maximum area of steel for a doubly reinforced section Agq may iS given by

D N S (3.13)
A; =a Aszl,max
<, (3.14a)
a 1-a
py: = dos (forsinglyrtsection(Table2.) (3.14b)
) l-a
Ay = Hog DA+ A e (3.15)

where Ly, is obtained from Table 2.1.

The yielding of theAcompression reinforcement can be verified by comparing the
ratio d’/d and with the maximum allowed value given in Table 3.1. If the

compression steel does not yield, the maximum area of steel can be obtained
from:

Ay g bd AT (3.16)
' f,/1.15
Maximum Moment Calculation

Referring to Fig. 3.4, the maximum moment for doubly reinforced sections
‘M4 max can be calculated using the following procedure

Mo = Mo # M e e eeeee e eeeeneenes (3.17)
4 f

M o = . 2P (A —d") e 3.18

ud ;max u,max 1'15 ( ) ( )



R_f. bd> A f,
M, ~=-mmee I (G —d Vs 3.19
ed qnax 15 115 ( ) ( )

where R,y 1s obtained from Table 2.1

An alternative procedure to obtain the maximum moment is to take the moment
around the concrete compression force. Referring to Fig.3.4.I, the maximum
moment is given by:. '

A A ‘
My = =2 LA PO e 11 ) I (3.20)
: 1.15 2 ) 115\ 2

Note that if the calculated neutral axis location “c” is less than the maximum
value allowed by the code “c,,” then the following rule applies:

fi=f,1115
C Con: /u</‘ldmax

If —<= the .
f d d . i As <A:d.max
Mu<MwI.m;u(

Photo 3.3 Peachtree Tower (1990), Atlanta USA (235m, 50 stories)

& |
Amax
\Q
[ofe

d
Asd,max
o008 ® .
l‘-.—'b_'{ e>g,/1.15 T=Asgmax £/1.15
I- Doubly reinforced cross-section
0.67 £, /1.5
~ ) 0.003 [—
L;E Mu,max «;E CC
d Q
3
-
As.max ‘
o 0@ :
&>g,/1.15 Ti=Asmax §/1.15
- S
II- Singly reinforced section with Ay
vd ‘ 0.003 C=A' £/1.15
o o . ,
M’ A'S 1\ g\ -
9
d T €8s -
. o
)
Alg
L @
' - | g>gy/1.15 T=A"s £/1.15

III- Section with A’s.fop and bottom

Fig. 3.4 Maximum moment and area of steel for doubly reinforced sections



Example 3.1(compression steel yields)

Find the moment capacity of the cross-section shown in Figure. Assume that d'
= 50 mm and the material properties are:

fo, = 25 N/mm’

f, = 400 N/mm”

2016

600

esee| 4022
200

Solution _
A;=4022 =152ctm’ =1520 mm’
A =2016 =4.02cm’ =402 mm’
d= 600—50=550mm

Step 1: Compute a.

d'/d =50/550 = 0.09

Since d'/d (0.09) <0.1 (Table 3.1), one can assume that compression steel
yields. This assumption will be checked in step 2. Applying Eq. 3. 4 gives:

067 f ba A S, _AJ,

1.5 1.15 1.15
0.67 f
15 .
A'=402 0.003 F—=1 A’ £,/1.15=402 x 400/1.15
e o BR—
<~—-—CC
olo S B TSRS N AN S
=
L
As=1520 A4 £/1.15=1520 x 400/1.15
X oo o =
- €
4 . 200 o
95

0.67x25x200xa _402x400 _ 1520400
15 115 RE;

a=174.1 mm ‘
¢=2/0.8=217.6 mm

a/d =0.317 > a/d)in(0.1) ....0k
c/d=217.6/550=0.396

Step 2: Check f; and f'

fi=600 c-d =600 217.6-50 =462 ﬂ ..0k.... (compression steel yields)
c 217.6 1.15

£, =600 dz¢ 6092202176 417,400 4 . (tension steel yields)
c 217.6 1.15

OR

e Since d'/d(0.09) <0.1 or d/a (0.287)<(0.52, Table 3.1)then
compression steel yields

¢ Since ¢/d(0.396) < (cy/d = 0.63, Table 2.1) then tension steel yields

Step3: Compute moment capacity, M,

R

Taking moment around concrete force C, and applying Eq. 3.7.
4 A

=2t (d ~3)+ 2 (ﬁ-d')
1.15 2 1.15\2

Thus

_1520x 400 550—174'1)+4°2"4°°(174‘1—50
115 2 115 {2

M, =249.94x10° = 249.94 kN.m

[Final Result: M, = 249.94 kN.m|

96




Example 3.2

Calculate the maximum area of steel and the maximum moment capacity that is
allowed by the Egyptian Code (ECP 203) for the doubly remforced section
shown in Example 3 1. The material properties are: £, = 25 N/mm” and f, = 400
: N/mm

d=550

oo oe Asd,max

| 200»

Solution
Step 1: Calculate maximum area of steel

-4
From Table 2.1 and for f, = 400 N/mm2 s lmax = 4.31x 107 £,
since d'/d (0.09) < 0.176 (at ¢ = Cpyy), table 3.1, then compression steel has yielded
Asd max © Hmax b d+ A'

Atmax = (431 %10 x 25 ) 200 x 550 + 402 = 1587 mm” > A(1520) ....... ok

Step 2: Calculate maximum moment capacity .

From Table 2-1: Ryu = 0.187, cpa/d = 0.42 for £, = 400 N/mm’
Using Eq.3.19 to find Mg max

M Row fu bd* A 1)

- d-d'
ull,mu 1'5 1 15 ( )

0.187 x25% 200x 550° 402x400
Mml.mux = 1 5 +

(550~ 50)}/106 =258.5 kN.m

The same result can be obtained using Eq.3.20 as follows:
Amax= 0.8 Crax=0.8 x 0.42 x 550 =184.8 mm -

Ay Sy a_ A'f(a, ,)
M, = Iy g Zew | 00 e g
w115 ( 2') Lis\ 2

1587 x 400 184.8)+ 402x400(1848

o =75 |07 115 \ 2

50): 258.5 kN.m

Example 3.3 (compression steel does not yield)

Find the moment capacity of the cross- sectlon shown in ﬁgure _
fo, = 30 N/mm®, and f, = 400 N/mm’ -

d'=100
‘ 250

-

o] 300 mm®

750

e e oo 1900 mm’

Solution

d=750 - 50 = 700 mm
Step 1: Compute a.

~—=_——=0.143> 0.10 (see table 3.1)...compression steel does not yield )

We can use Eq3.80rEq3.10to Calculate a

4, 7,
067 fuba o A,
L5 115

0.4466 f,, ba® — (A, f,/1.15-600x 4. ).a—4804’ d'=0

3350 a® —360869 a—24x10°=0

(1%

Solving for the only unknown “a

a=154.2 mm—— ¢ = 192.73 mm

0.67 £,
250 Ls
pa— 0.003 .
B p=
o o o[l FH-—c
A'=500 i ~—C=A T,
ol AR ) OO N S ok
O
o~ =
A=1900
LK) —A, f/1.15
€8y

aR




Step 2: Check f; and f's.

192.73 -100

'= 600
s 192.73

=288.6 N/mm’ < % compression steel does not yield

Since ¢/d(0.275) < c/d = 0.63 then tension steel yields f; = f,/1.15
Step 3: Compute M, |

Taking moment around concrete force C,
Af, (. \ A, f, :
Mn=—‘-’:L(d-ﬁJ—A;f;(d'_ﬁ ALy e +A L —a
1.15 2 2 1.15 2 T2

1900x 400 . 2
M, = 2 10)1(5 (700 - 15; 2) +500x288.6 (% - 100) =408.3x10° = 408.3 AN.m

IFinal Result: M, = 2083 kN.m|

nn

3.1.4 Design of Doubly Reinforced Sections Using First

Principles _
The same procedure used in designing singly reinforced sections is used for the
design of doubly reinforced sections. The unknowns in these types of problems
are the beam depth, area of steel, neutral axis position and the ratio of the
compression steel o. ' '

Given = :fu,f,, My b d’
Required :d, 4; and A';
Unknowns: a, d, A; and A’

Since we have only two equilibrium equations, we have to limit the unknowns to
only two. If not given, the depth of the compression steel will be assumed 0.05-
0.1 of the beam depth to ensure yielding of compressed bars for all steel grades.
The design procedure can be summarized in the following steps:

1. Make the necessary asSﬁmptions
d' =0.05-0.10 d (compression steel yields for all f,) _
Assume 4, =y b d — (. for singly reinforced section (Table 4.1))

Assume 0=0.2-0.4 and.
Equilibrium of forces gives.

067 f, ba (@x4)f, 4 1,
1.5 1.15 1.15

Geta=A1d

Taking moment around the concrete force gives

A . A’ )
M= A4S, (d _3)4. _;L_(E_d') .
_ 1.15 2 1.15 \ 2

Solve the above equation to determine (a, d), then calculate
' A= phoy b d
Al =a A,

2. Check the minimum area of steel
As> Asmin

3. Check the maximum area steel and the maximum moment by ensuring that

(c/d<cpa/d)

100



Example 3.4

The doubly reinforced section shown in figure is subjected to a bending moment
of a factored value of 200 kN.m.

d’ =50 mm, f,, = 27 N/mm’, and f, = 280 N/mm’

Use the first principles to determine the required beam depth.

le——|
o o] A'=509 mm®

s ® | As=2260 mm’

Solution
| Step 1: Compute a.
Assume that both compression and tension steel has yielded.
This assumption will be checked later
Given ' Sew Sy My, b, d', A; and A
Required :d : :
Unknowns : a, d
Since we have two unknowns only in this example, nothing needs to be
assumed. Apply the first equilibrium equation:

0.67 f, ba A AL _ A,

15 L5 1.15
0.67x27 x250x a ", 509280 2260 280
1.5 .15 - 115
a= 1414 mm :

-¢=a/0.8=176.75 mm

==2260x280/1.15

eg /115 .

Step 2: Compute beam depth d

Taking moment around concrete force C,

A Al
T
- 115 2 1.15\2

‘200x10°:2260x280( _141.4) 509x280(1414_50)
1.15 5 5\ 3
d=429.5 mm

Step 3: check f, and f'
d'/d =50/429.5=0.116 _ .
Since d'/d = 0.116 <0.2 (code limit for mild Vsteel‘ see table 3. l), ‘thﬁs
fFo=f/115 | | |

. , . ¢/d =176.75/429.5 = 0. 4115 v
From Table 2. 1 Cmar/d = 0.48 for f, = 280 N/mm

f,=f, /115
H <-~udmax .
A (22.6 cm®y < Ay e
M, (200 KNm) < My oo ¥

_2_(0_41 NES f‘("{i(o.z}S)" : then.

[Final Result: d = 450 mm and t=500 mo] -
250

A's=50,9: mmz-

500

e e o0 | As=2260 mm’

10t

102



Example 3.5

A reinforced concrete cross-section is subjected to 265 kN.m. Architectural
considerations require limiting the thickness of the section as much as possible.
Economic considerations limited the value of a to 0.3. According to these
constraints, design the cross section. Check the maximum area of steel and the
maximum moments allowed by the code knowing that:

b =250 mm, f,, = 30 N/mm’, and f, = 360 N/mm”

Solution
Step 1: Assumptions-
Given ety Mu b, a(4')

Required :d, d', 4;
Unknowns_ ra, d d) A
We have four unknowns, thus we shall assume two (d' and As(p))

1. Assume d’ =0.10d
2. Assume W= P — (for singly reinforced section) -
p=5x10"f,=5x10*x30=0.015
A =ubd=0015x250xd =3.75d
A =ad =03x375d=1.125d
Step 2: Apply the equilibrium 'equd’rion T=C Eq; 3.4

Assume that compression and tension steel has yielded.

067 f,ba Af, AT,

15 .15 115
| 0.67x30x250xa  1125dx360 _ 3.75 d x360

. 1.5 1.15 115

a= 0.2453d

a/d = 0.2453 > a/d)min(0.1) ....0k

: 0.67 £,
1.5
_ A’ £/1.15
l—C,

e A f/115

£>5,/1.15

Step 3: Apply the second equilibrium equation, Eq. 3.7

Taking moment around concrete force C,

4 4
M=l d-f’-)+——’ /, (ﬁ-d')
115 U 2) 115\2

3.75 d x 360 Ld_0.2453 d)+1.125 dx360(02453d ., d)

265x10° =
v 1.15 2 s L 2

265x10° =1037.9 &

d=50529 mm
A, =3.75d =3.75x505.29 =1894.8 mm®

A =1.125 d =568.45 mm’
Taked =550 mm, d’ =0.1d = 55mm -

and t = 600mm

Step 4: Calculate minimum area of steel

0225 fu ) _ 0.222 ;)/ﬁ x250% 550 = 470

=smaller of f 3
1.34, =1.3x1895= 2462

A =470cm” < A,....0k

smin

Step 5.1: Calculate maximum area of steel
Since d'/d (0.1) < 0.21 (from Table 3.1) and even less than the code value |
of 0.15, we can assume thét compression steel yields.

- Asamar = Hnax bd + A= 5x10% x 30 x 250 (550) +568.45
. Asamec= 2631 mn’ > A(1895) ... 0k 250

. o] A'=568 mm’
. | 3
Step 5.2: Calculate maximum moment =
| ___Rmax f;ubd2+A;f;'(d_dl) L X J “5*5'—:18951'1’1111Z
ud max 1‘5 1.15

Final design
From Table 2.1 R;,.,=0.194

2 . .
_ 0.194x30x250x5507 | 568360 55 551 _3g1gNm > M, (265)

M

wilymax 1.5

lﬁinal Result: d= 550 mm, A, =1895 mm’ and A’; =568 mﬁ




Example 3.6

Design a doubly reinforced concrete cross-section to withstand an ultimate
| moment of 265 kN.m by assuming area of steel. Check the maximum area of
steel and the maximum moments allowed by the code.

b =250 mm, f,, = 30 N/mm’, and f, = 360 N/mm’

Solution
Step 1: Assumptions
Given Sew S Mu b

Required :d, d' A4, A’
Unknowns :a,d d' A, A's »
We have five unknowns, thus we shall assume three (d'and 4,, 4'(a))

1. Assume a=0.3, d'=50 mm
2. use the approximate relation to assume Ag,

X ‘6
4, =0.11 My b _ 11 [265X007 X250 4o
7, V" 360

Take A= 1500 mm*
Al =a A, =0.3x1500 =450 mm’

Step 2: Apply first equilibrium equation T=C
Assume that compression and tension steel has yielded.

0.67x30x250xa + 450x360 1500% 360
1.5 - 1.15 1.15

a=98.12 mm andc=12a/0.8 = 1_22.‘65,mm

Step 3: Apply second equilibrium equation YM=0

Taking moment around concrete force C,

vt (d-ﬁ‘—)+ 4 f, (ﬁ—d')

1.15 2) 1152
265x106=1500x360(d_98.12 +450x360{98.12_.50]_»
1.15 2 115 {2
= 250 | o . ,
- ‘ 0.003 . A f/1.15=450x360/1.15
® A [ ] e 1. [
| VAL == S

B B e '

e e A, £,/1.15=1500x360/1.15
€>g,/1.15 :
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d=614 mm. c/d =122.65/614 =02
Since d'/d (50/614 = 0.081)< 0.15 (code limit for f, = 360 N/mm?®), then

our assumption that compression steel has yielded is correct.
Take d = 650 mm and t = 700mm

Step 4: Calculate minimum area of steel

0.225 .
e bd =
=smaller of {  f,

x2$0x650 =556

0.225+/30 _
360 . =556cm®<A,....0ok

A

1.34, =1.3x1500 =1950
Step 5: Check maximum area of steel -

Since ¢/d(0.2) <0.44 (code limit for f, =360 N/mm?), then our assumption
is correct and A<Aggmax, Mu<Mud max- ‘

250
. o] A'=450

700

[ X X J AS=1500

Final design

NOTE: The cross sections in Example 3.5 and 3.6 are subjected to the same
bending moment, however, the same capacity was obtained using different depth
and area of steel as shown in figure. For the same moment capacity, area of steel
may be reduced but the beam depth has to be increased.

Amm?)

A

Example 3.5 (Mu=265 kN.m)

1895¢--------= Example 3.6 (Mu=265 kN.m)

1500 ---=====~~====

» d(mm)

10A




Example 3.7

Design a doubly reinforced concrete cross-section to withstand an ultimate

moment of 360 kN.m knowing that the beam thickness equals to 650 mm.

b =250 mm, f, = 35 N/mm’, and f, = 400 N/mm>

Solution .

Step 1: Assumptions A
Assume o=0.3, d'=50 mm, d = 650 —50 = 600 mm. Since we have two
unknowns, (a and 4,), the equilibrium equations are used directly as
follows:

Step 2: Apply first equilibrium equation T=C
d'/d =50/600 = 0.0833 < 0.10 compression steel yields
067x35x250xa  03x A, x400 _ 4, x 400

15 1.15 L15
a=0.0623 A, 250 S
o
0.003 A's £,/1.15=A's x400/1.15

600

As £,/1.15=A; x400/1.15

£>€,/1.15

Step 3: Apply second equilibrium equation ¥M=0
Taking moment around concrete force C,

4 f, a) A f.(a
M=—"21d——|+=2=2| Z_g
LIS [ 2) 1.15 (2 dj

A, x 400 ( 0.0623 As') L03x4,x 400( 0.0623 4, 5 0)
1 2 -

. 360x10° = 600 —

1.15 2
Solving the above equation gives A.=1904 mm’, 4’ =03x A, =571 mm?®
Thus 2=0.0623 x A:=118.61 mm

Step 4: Check Agymex and A,

c=a/.8=148.267 mm ‘
¢/d=0.24 < ¢/dnyy(0.42).....0k (A<Agmax)
. (0225435 _ ' .
Ao =smaller of ™ 400 250%600=499 =499 cm® <A, .0k

' 1.3x1904 = 2475
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3.1.5 Design of Doubly Reinforced Sections Using Curves

The design of doubly reinforced sections from the first principles is complicated.
Therefore, design curves were prepared to facilitate their design. _
In developing such curves, both compression steel and tension steel were
assumed to reach yield. In addition, two values for d'/d were used in developing
these curves and tables namely (0.05,0.1). These selected values were chosen to
satisfy code requirements and to ensure yielding of the compression
reinforcement for all types of steel. :

Recalling the first equilibrium equation 3.4 and referring to Fig. 3.5

087f.ba A S, A,
_ 15 L1515
Dividing by (£, b x d) and rearranging

067 a_ K, (1-a)
1.5 d 1157, "
where o= A'/A; and p=A;/(b.d)

Define o= yjf:—y eeereeeereeeseseeeseeeesseeseseemeeeeemenenes (3.21)

0.67x f_,
1.5
b

et
 BEE— 0003 Ar £/1.15

T T e

1A £/1.15
£>,/1.15 v

| Fig 3.5 Location of the neutral axis for doubly reinforced sections

% = 1.9468 (1= @) oo (3.22)

. Recal]ing the moment equation around the concrete compression force

4 A '
M= (a-2)e L (2 a
1.15 2 1.15 {2
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- dividing by (f., b x d*) and rearranging
A !
R1=—2a T =T /s [d—3J+A’—f"(ﬁ—d')
fubd® 115f,bd* 2) 1151, bd*\2

R1=i(1—,i]+ﬂ(i-i]........................; ......... (3.23)
1',15 2d 1.15{2d d

To find oy in case of doubly reinforced sections, recall equation 3.14

A o g
Ay = ls.m;x , dividing by (b d f; /f.)

Dy = e nsene e (3.24)

l-

where .y 18 givén in Table 2.1

Figure 3.6 shows an example of such curves. Appendix A contains R1-® design
charts. Table C in the appendix gives the maximum moment index R, for
each values of &, ymax- TO use the table enter with a and £, and either (R)max to

find @gmax) OF (@dmax t0 find Ripma). The design procedure for using Table C to
design doubly reinforced section is illustrated in Example 3.8

0.38 J3 1 11 1 I i 1 J. 7
036 L] M 0 for £, =240 Nrmm?
e — 2
03a L] O O, for £,=280 N/mm2 B ) Aa=h.6
® O for f, =360 N/mm 7
0324 4 Gy for £, =400 N/mm’
0.30 é;!isﬂf
0.28- ‘ : /VA ‘
0.26 - - / _
o /
o . - / a30.4
S om W Za
“;5 0.22 - ‘L.____
= a=p.3 M, A
L 0.20 f 1 —
P o=p.2 ‘ 1.
G186 =07 Ho—
0.14. .(;0
012
0:10
0.08
0.06 4 ——
BoNYOLRYIERRIYIBBLYILE]
e J R A R O
O O OO0 0 0O 0 0 0. 0 0 0 0 0 O 0 © O O O O O
. o |
Fig. 3.6 Design chart for doubly reinforced sections
: 109 :

Procedure for Using Charts and Tables

The general steps for using the charts or tables can be summarized in the
following:

e  Assume d'/d=0.05-0.1
° Assume 0=0.2-0.4 ‘
e Choose the highest R/ for the chosen o to get the smallest possible
depth '
) Compute the depth “d " from the following relation
Ri= —ﬁ—z—
fubd _
. From the tables or the charts get ®
) Compute the area of steel from the following relation

As=w£’ib d s Al =ax A,
"

. Notel:Nb need to check Aggmax because the limits are already in the charts
Note2:No need to check A in because we usually use [ near plpnax

Photo 3.4 A reinforced concrete building during construction

110



Example 3.8

Example 3.9
g@lgﬂ a}ddoubly reinforced concrete section subjected to M, = 480 kN.m using Design a doubly reinforced section subjected to M, = 320 kN.m using Table C.
€sign aids. b =200 mm, d = 600, f, = 25 N/mm and f, =280 N/mm?
b =250 mm, f, = 20 N/mm’, and £, = 240 N/mm’” Solution
Solution

Assume d'/d=0.10
In using Table C use My = Muygmax

Assume d'/d = 0.10
Assume oo = 0.3

; 6
Enter the table or the chart with oo = 0.3 and get the value of R1 and @ very close Rl .= M“’I’)"‘;"z =53 322(()); 106002 =0.177
to the maximum allowable for f, = 240 N/mm?® to get the smallest possible S x ) .
depth. Thus get R1 = 0.2 and ©=0274 From the table C with d'/d = 0.10 and Rigame = 0.177, we can notice that the
y _ moment capacity exceeds singly reinforced section and we must use
Rl= _ﬁi? compression
m480>< 10° Ry reinforcement. Thus, by interpolation get
= 20%x 250x d2 R]=0.2 =0 3 . o= 0.205 and mdmax = 0.248
d =693 mm y fy | @amax a M
Rldmnx - xul.muxz
f.bd
d'/d=0.05 d'/d=0.1 |d'/d=0.15] d'/d=0.2
280 |-0.196.] 0.00. 1381} 6:138 .| 0.138 |
0.206] 0.05 | 0.147 | 0.146|] 0.146 | 0.145
% 0.218] 0.10 | 0.156 | 0.155|| 0.154 | 0.153
1 0.231]0.15 ] 0.167 | 0.165/| 0.164 | 0.162
©=0274 0.245] 0.20 | 0.179 |/0.176W 0.174 | 0.172
0.2%1 0.25 | 0.192 |\0.1892 f 0.186 | 0.184
4 =olep d o 0.280] 0.30 | 0.207 | 0204 | 0.200 | 0.197
f‘y -
20

=0. 274x%x 250% 693 = 3955 mm”

" . A: = (odmux fC" b d
A =a A, =03%3955=1186 mm® s

Take d = 700 and t = 750 and A, = 3955 mm’ 4,= 0.248x52§56200x600 = 2657 mm®

A =a A =0.205x2657 = 544 mm*

250 s s 200
= . = 2 ) -

M,=480 kN.m o} A'~1186 mm 320 KN . | Aresaa
(@)
el

= [en)
o e o o] A=3955 mm? .
Final design : 1o e @ of A=2657 cn’

Final design




Example 3.10

"Find the maximum cantilever span L, for the beam shown in the ﬁgure at section
[ using R1-w de51gn tables. The material properties are
f, =360 N/mm £y = 40 N/mm?

P=80 kN
l}Wu'—‘lS KN/m’

| 50 . L
f i 1
1200 _,
sese] 4D 28
A
* | 2®25
Section I
Solution
Assume cover = 50mm
d' =50 mm

d =550-50 ="500mm , _
Since section I is subjected to —ve moment, the teénsion steel is at the .top and the
compression steel is at the bottom of the beam.
As=2463 mm’, A';= 982 mm’
a= 282 _ =0.398~04

2463
d'/d = 50/500 = 0.1
A, = w&‘b d

5
¥

2463 = x-9 4 200x 500
360

- d=500

o =02217

From Table R-w design tables (d'/d=0.10) with (0 = 0.2217 and o. = 0.4)

getR1=0.17
(0]
R1 a=00 a=01 a=02 a=03 a=04 a=05
Qo1 . 0013 Q012 0012 [a01Z [ap12] ]ooid
-Q02 0024 Q024 0024 [ao24 [ ob24| 0024
003 0034 0035 003 [oo3g | opse| [aos
004 004 0048 0048  [coad | apds] [coag
Q05 0061 Q0671 006{  |0061 ope1] | aoe1
006 0074 Q074 0074 |aov4 | opr4| 0074
Qo7 0084 0067 - |oosf jaosd | aper o087
Qo8 0102 Q101 ~jood Jotod | apsel |aoeg
Q09 0117 Q114 o4 Tand  [ofiz] {and
a0 0133 i 0128 |aizg ai125 o125
at Q147 0144 0142 {0140 | ahze] {a13g
012 [400 . |a164 0159 0154 |a154 | afi52] | 0151
Q13 [360 0181 0174 017{ |oi6d | cfies| [ated
014 |24@280/0199360400 Q192 0184 {018 - ai1‘79 Q177
Q15 280 | 0209 0202 |0Q197 %93 Q191
.16 240 | 0226 4083600214 | 0211 ,ahoz\ 0204
017¢€ : —{—280-10 9227 (022 ) 0218
<018 | 240 Jo25{ 400 0249 o238} 0231
R1 =_M" 5
f.bd
0.170 = -———M“———
40 200 x 500°

M, =340x 10° = 340 kN.m (internal moment)

2
M =%+R‘ L. (external moment) -

u

External moment =Internal moment '

.
L +80 L, -340.0=0

Solving the second order equation gives:

L. =3.256 m.




3.2 T-Beams
3.2.1 Application of T-Beams

Reinforced concrete buildings usually consist of beams and slabs that were cast
monolithically. Thus, slabs and beams act together in resisting the applied loads.
As a result, the beam will have an extension concrete part at the top called
“flange”, and the beam is called a T-beam. The portion of the beam below the
slab is called the “web”. The stress disiribution in the slab will vary according to
the ratio between the thickness of the slab and the overall thickness.

3.2.2 Effective Flange Width

The distribution of the flexural compressive stresses in the flange of the slab is
shown in Fig. 3.7. The compressive stress is a maximum at the beam locations,
and minimum between the beams. The concept of replacing the non-uniform
stresses over the width B, to uniform stresses over a width B is called the
effective width. The compression force developed in the reduced width B equals
the compressive force in the real compression zone-of width B,

Magnitude of compressive
stress in flange

b) Flexural compressive stress distribution assumed in design

Fig. 3.7 Distribution of compressive stresses across the flange
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To simplify section capacity calculations, most codes assume uniform
distribution of the stress and specify a limited width of the slab to be considered
when analyzing the beam capacity called the “effective width” as shown in Fig.
3.8. For T-sections, the Egyptian code ECP 203 section (6-3-1-9) requires that
the effective width does not exceed the following

16t +b

B< %2— +b for T - sections .....c..cceeueun. eeereerareresaneanane (3.25.2)

ClLtoCL
61, +b
B< 1%2)— +b for L -sections .....ccocceeerervuerenanns vevrenens (3.25.b)

C.L to edge
where

L,=L simple beam
L, =08 L oneend continuous
L,=0.7L continuous beam

in which L is the effective span (explained clearly in Chapter Six)

1
[ ! i
.@. ........ | _____ m ________ :_._4_._.;§_
i i ]
i i -t =} | i
i i i i
g | P Dy il g
§ | i3 P il s
3 i i D S il
1, . . t 1 = + 1
~3 N ] B~ L <% 1=
i i S i
i i ! i
i i ! i
i i

1 I N | ﬁ;_.__._.§

C.L. to edge ; CL.toC.L.
for L-beam | for T-beam
| T
B=6t,+b B=16t+b g
i e

. g7 17 777 )
L-section ]
A :
-—b-a—— l.._ T-section

Fig. 3.8 Definition of T and L-beams in the ECP 203
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The direction of the bending moment distinguishes between rectangular and T-

sections. If the flange participates in resisting the compression stresses resulting

from the bending moment, then the section acts as a T-section. On the other

hand, if only the web of the beam resists the compression stresses, then the
. section acts as a rectangular section. :

Consider for example the simply supported beam with cantilever shown in Case
I of Fig. 3.9. According to the given schematic bending moment diagram,
section A-A acts as a T-Sec., while section B-B acts as a rectangular-section.
Case II, on the other hand, shows a simply supported beam with cantilever, in
which the slab is located at the bottom part of the beam (called an inverted
beam). In such a case, section C-C acts as a rectangular section while section D-
D acts as a T-Sec.

Case | . ' Case I

[

Bending Moment Bending Moment
B _ ' b
T —— L
M .\\\\\\ I eee I
¢ ; Ag o
. ompression compression mpressnon ompression
: zone zone J zone
S M, b AR \ NN
l R-Section I LR—Section LT—Section
Section A Section B Section C Section D

Fig. 3.9 Compression zone for T-beams

When designing a T-Sec., the neutral axis could be located inside the flange
(Fig..3.10.A) or outside the flange (Fig. 3.10.B). Each case shall be analyzed in
detail in section 3. 2.3

compression
zone

compression ﬂange .
zone

= \\

d TNeutral axts & G -

B-Neutral axis in the web

Fig. 3.10 Location of the neutral axis for T-sections.
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3.2.3 Analysis of T-Beams

Case A: Neutral axis inside the flange (as< t;)

The details of this case are shown in Fig. 3.11. Applying the equilibrium
equation gives:
T=C,
067f,Ba_ 4, f,
1.5 1.15

After calculating the stress block distance “a” the nominal moment can be
computed by taking the moment around the compression force C,:

A
M, =—’—f"(d -2) ....................................... (3.27.A)
15 2

In some cases the depth of the neutra] axis (2) is very small and less than the

minimum required by the code (0.1 d). In such a case, the stress block distance
is assumed to be a=0.7 d. Thus Eq. 3.27.A becomes '

M, =4, f,0826d) ..o «..(3.27.B)
Tts—f; I *'::j* Cc=o.67:°5u Ba
,_.;L: ’ T=A,£/1.15

Fig. 3.11 Neutral axis located in the flange (a<t,)

Case B: Neutral axis outside the flange (a >ts)

If the external moment is large enough, the neutral axis will be located outside
_ the flange(Fig. 3.12.A). The ECP 203 permits the use of the stress block in the
case of T-beams as stated in clause 4.2.1.1. For the sake of simplicity and for
comparison with rectangular sections, the compression zone will be divided in

119

two parts. The first part is in the flange with a width (B-b) and thickness of‘ ts
(Fig. 3.12.C). The second part is in the web with a width “b” and depth “a” (Fig.
3.12. B).

The force in the flange C; equals:

_0.67f, (B-b)t,

(ot LT s L N (3.28)
4 L5
The force in the web C,, equals:
Y80 ab a (3.29)
* 1.5
B t 0.67 £ /1.5

i : ' - | 0003 f—l

{
T TR
M,
‘ ( Qg
b I e
sl |o
Ag -
o0 ESe/115 ToAs /115
el
b
A- Equilibrium of forces for the complete cross section ‘
B0 @b B | e
da2 - it = dai2 |dt2 |
A
T2 .
: "l;"' b T=A f,/1.15
— —
B- Force in the web C- Force in the flange D- Forces in the cross section

Fig. 3.12 Analysis of T-beam for the case of neutral axis outside the flange
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Applying the equilibrium equation

y B
Sy _067f, (B-b)L, 06f,ba (3.31)
115 s 15

Solving Eq. 3.31 gives the equivalent stress block distance a.

The moment of the internal forces may be taken around any point such as the
location of the tension steel as follows:

M, = c,(d —%chw(d —%} SOOI ¢ 5 7))

For the sake of simplicity, the code (Section 4-2-1-2-—) permits neglecting the
compression part in the web and calculating the compression force as if it is in

the flange only as shown in Fig. 3.13 In this case, the ultimate moment is taken
the smaller of the following two equations:

A f,
Y211 LA S (3.332)
1.15 2
M, =M(d -’—f) ..................................... (3.33b)
15 2
B ' 0.67x f,, -
= 1 4% oerr, Be
C,= :
e 15
part to be
neglected
. o
< ‘
A
1. -9
- | T=A, £/1.15
b

3.2.4 Minimum Area of Steel for T-sections

The minimum area for T-sections is the same as the rectang\.xlar sections as
stated in the ECP 203 section (4-2-1-2-g). The minimurp area is related to the
web width “b”, not to the flange width “B” as shown in Fig. 3.14.

9_'_22._._ ~lf“‘ba’ >ll_l.bd

A, i =smaller of Sy T (3.34)
134,
0.25 .
—= b d(mild steel)
but notless than 01?2 ................................. (3.35)

——= b d(high grade)
100 (highg

B

Aq
eoe

b
Fig. 3.14 Calculation of Acmin

Photo 3.5 A part of an art museum (USA)
177



3.2.5 Maximum Area of Steel for T-sections

'l_"hf? maximum area of steel allowed for T-sections is usually several times the
llmlt's for rectangular sections. Thus, it is rare that a T-beam can exceed the
maximum area of steel. It should be mentioned that, whether the neutral axis is
located inside the flange (case A) or outside the flange (case B), the ECP 203
uses the same procedure for calculating the maximum area of steel,.

. B ) 0.67 £, /1.5
. — | 0.003 ’ !
Mutmax T : Cwmax
d (
3 ® o0
———
: ot d1.15 Tomaxc=Asmax £/1.15

0.67 1, /1.5
. e e . 0.003 Ay
1
Cmaf t———md el .: é] / < C
«;E < T*\/wmax
d o
&
J <
2 XX e
: €s8,/1.15 g
b =8y Tumac=Asvmax £/1.15

B-forces in the web

(B-b)/2 (B-b)2  0.67£,/15
- —— 0.003  +—

EWW e

} 1 )
I 1
d L i «
. I i o
1 f o
) ! A
e 1.?_._...1

fe | /1. >
C-forces in the flange b Foty/ 115 Thinax=Astmax £,/1.15

Fig. 3.15 Calculation of the maximum area of steel and moment for T-sections
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The maximum area of steel can be calculated by applying the same principle
used in rectangular sections. The cp,,/d values listed in table 2.1 are used to
determine the maximum area of steel. Referring to Fig. 3.15 and observing the
notations used in that figure, one can drive the following equation:

_0.67 £, ba,,

= R —— (3.36)
Applying the equilibrium equation Tyma= Cimax gives
L 067 o b (.37

LS 15
The procedure for calculating the maximum area of steel for section B is
equivalent to that of rectangular section, thus

A = Hine DX eeoereeeeeeeeeeeeeeeeereeeeereeeeee e (3.38)
where L.y is determined from Table 4-1 in the code or Table 2.1 in Chapter 2.

_0.67f, (B-b)t,

C = T et ettt 3.39
J max 1.5 ( )
Applying the equilibrium equation Trmax™ Chnax, gives
06 By (3.40)
1.15 1.5
A =051367 B0 1 fu (B-b)t, (3.41)
I 2 7
Astmax=Assmax Agfmas ewosssesseereeeerereesisseseeseeeeeeeee (3.42)
fu (B-b)1 |
A = bd+=8 Sl e 343
TUst max :umax 2X fy ( )
OR
Corme +Cr
Y OO (3.44)
: f,/1.15

The maximum area of steel allowed for a T-section is much bigger than that for
a rectangular section especially when the section has a wide flange. Figure 3.16
presents the maximum area of steel for T-sections. It is clear from the figure that
the maximum area of steel can be as high as 6-8%(about five-six times more
than the maximum allowed for rectangular sections). "
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8 Himax (%)

7 L7 =25 Nimo? B/b=10/ T
5 || 5= 360 Nmn? Bib=8 | _—
; L o
A e | _—1 o4
X ] i
2 %’Z—/
) recta'ngular‘section B/b=1
0 .
0 0.05 0.1 0.15 d.2 0.25

t/d

Fig. 3.16 Maximum areh of steel for T-sections

Maximum Moment For T-sections
Referring to Fig. 3.15 and summing the moment of the forces around the tension

steel

M =C

uf nax

o (@ —ﬁ*‘—) € (d ) ....................... (3.45)

The part in the web 1s equivalent to a singly reinforced SCCUOH thus”

‘ bd* ¢
M = lmxf &
s —*1 5 + Cfmux (d ) s (3.46)

Note: It should be clear that if the calculated neutral axis depth c is less than the

maximum allowed value c,,,, then there is no need to check the maximum area
of steel or maximum moments

fi=1,1115
c _c.. <y,
. [ _S_mi th ImAx
f 4> g e PIPYRIN [R— (3.47)
Mu'<Mut,max~ 1 ‘
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3.2.6 Design of T-sections Using Flrst Prmclples '
Given  :fu,f» M. b, B
Required : 45 and d

Unknowns: a, 4; d
The design procedure can be summanzed in the followmg steps

1. Make the necessary assumptions (either)
i. Assume d _
ii. Or, estimate |1 or A, as discussed in Chapter 2(see example 3.13)
2. Assume that the neutral axis is inside the flange then determine the
depth of the stress block a using the equilibrium equation: '

0.67f,Ba_4,f,
' 1.5 - 115

3.Calculate the beam depth using the moment equation as fo!lowé: ' '

B - a

| |
3

\\\\\\\\\\\\\\\\‘\\\\‘\\\\\\\W

— b

As
o6e

if a < tg then calculate the depth using Eq. || If a> t; calculate the depth

3.27.A orEq. 3.27.B || using the simplified Eq. 3.33
A : A
. I (d ——) 20.1d  @214) || M, = ALy (d _’_fJ
1.15 2 , 1.15 2

M, =08264.f d a<0.ld  (3.27.B)

3. Determme A (only if you used 1-i, Sklp this step if you used 1-ii)
A =pbd , A=0 « -
4. Check minimum area of steel

5. Check maximum area steel and maximum moment (c/d<cmax/d)




Example 3.11

The figure shows a T-section that is subjected to an ultimate moment of a value
of 220 kN.m. Using the first principles, calculate the required depth and area of
steel. The material properties are £, = 25 N/mm?’ and f, = 360 N/mm’

1500 mm
e
100 — [
A
o @
(—
‘Solution 120

Step 1: Assumptions

In this example we have three unknowns a, d, A; and we have only two
equilibrium equations, thus we shall assume one unknown (4;)

Assume A;=0.01bd=0.01x120xd=124d

Assume that the neutral axis inside the flange (a<ts)

Step 2: Determine a
067f,Ba A, f,

1.5 1.15
0.67x25x1500xa 1.2dx360
1.5 1.15
a=0.0224d
a/d = 0.0224 < a/d)y,i(0.1)
usea=0.1d
c 1500 0.67x25
, | vvmm N 15
, -
R =] Ve
g ==
d
Q
<
A, )
[ 3N J
T=A, £/1.15
120

127

Step 3: Calculate d

4, f,
Mu=‘—f’ d-21=08264, 1. d
1.15 2 .

220x10°= (0.826)x1.2 d x 360xd = 356.86 d*

d=785.2 mm

a= 0.1d =78.5 mm < t; (our assumption is correct a<tg)
As=12d=942.2 mm’

Use d = 800 mm , As = 982 mm’ (2025)

Step 4: Check Agnin

——== 77" [20% 800 =300 mm?

0.225 25
360

A . =smaller of

=29333mm* <A, -0k

s min

1.3x942.2=1224.8 mm?

Step 5: Check Ast max. Mut mox
From the code ¢, /d = 0.44
a/d= 0.1 — c/d=0.125
Sinice ¢/d (0.125) <Cra/d(0.44) then My<Mmax and Ac<Agmax

[Final design d = 800 mm, t = 850 mm and A, = 2025 (9.82 cm?)

_,L 1500 mm
| i

_.1
850

=2 P 25 L

120

Final Design
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Example 3.12

Calculate the maximum area of steel and maximum moment for the section

given in example 3.11. f, = 25 N/mm? and f,=360 N/mm?

Solution

1500 mm

Step 1: Calculation of Maximum area of steel

From Table 2.1 Cyex/d=0.44 for f, = 360 N/mm?

A= 0.8 C max = 0.8 x 0.44 x 800 = 281.6 mm

_0.67f, bay,

_ 0.67x25x120x281.6

wmax 1 5 1 5 = 377344 N
0.67f., (B=b)t, 0.67x25x (1500-120) 100
€™ — — = — = 1541000 N
1500 @ ‘ 0.67x 25 /1.5
- ’ I | = 0003 T
100 ’ ”5 < Cfmax
Cmad “pp T [ Comax
= : ,
oo
i [ ] Asmmx ] ——
ety 115 Toac=Asmar /115
I_‘___..‘ max stymax 1y 1.
120

To find the maximum area of steel, apply the equilibrium

max

y Comu +C;
s f1S

_ 377344+1541000
s 360/1.15

OR use Eq. 3.43

=6128mm” > 4, ---ok

From Table 2.1, fhua: = 5 x 107 fo
s =5 % 10™ fo, = 5 x 107 x 25 =0.0125

A, =p bd +&’%%=0.0l25x120x800+w ~ 6000 mm”
. o

) . 2x360
Step 2: Calculation of Maximum Moments

To find the maximum moment take the moment around tension steel

Qoo+ : z
M, o = Croma (d 22+ Cpp (d -
4t ,max wmax ( 2 ) fmdx( 2 )

100
2

2816, . 1541000 (800

My =377344.(800 - =

)=14045kN.om > M, ..ok

OR use Eq. 3.46

R f.bd’

t
M, o ommmia 4 (d-E
ul max 15 frnax( 2)

2 g : | '
_ 0.194x25x120x800 +1541000x(800—~1—g—0) = 1404 kN.m

Mutmax -
: 1.5
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Example 3.13 T Sections (a<t;)

The figure shows a T-section that is subjected to an ultimate moment of a value
of 280 kN.m. Using the first principles, calculate the required depth and area of
steel. Check the code limits for maximum and minimum area of steel and M.y
f,, = 30 N/mm’ and f, = 400 N/mm®

J_ , 1200 )
|

Solution 150
Step 1: Assumptions

In this example we have three unknowns a, d, A; and we have only two
equilibrium equations, thus we shall assume one (4;)

1. Assume that a<t
2. The area of steel may be assumed as

6
4,=0.11 M, b _ 11 [280X10°x150 Lo e
7, )

Step 2: Calculate a
0671, Ba_4, f,

1.5 1.15
0.67x30x1200xa _ 1127x 400
15 1.15

a=24.38 mm —— Qur assumption is correct a<t;
c ’ 0.67 fou

: 1200 T

i, -~ C

s r T S =

d 3

o

A,
*-e-0
T=A, £,/1.15

Step 3: Calculate d

Assume a<0.1d, thus use a=0.1d

use Eq. (3.27.B)

M, =4, f,(0.826d)

280%10°= 0.826x1127x 400x d

d=751.8 mm .

a (24.38 mm)< 0.1 d (75.18 mm) our assumption is correct a<0.1d
Use d = 800 mm , A, = 11.27 om’

Step 4: Check Agnin

———4 150% 800 =370 mm?

=smaller of =370 771"12 <AS -0k
1.3x1127 =1465 mm* '

0.22530
00

A

s min

STCP 5: CheCk_Asfmax: Mut,max

From the code Cpa/d = 0.42
a/d=0.1 — ¢/d=0.125
Since ¢/d (0.125) <Crmax/d(0.42) then My<Mytmax and As<Astmax

Photo 3.6 Testing of simply supported reinforced concrete beam under flexure




Example 3.14 (a>t;)

Compute the depth for the T-section shown in figure if it is subjected to an
ultimate moment of 380 kN.m using first principles.
fo, = 22.5 N/mm® and £, = 400 N/mm’
420 mm
le
gt y
80 mm l

T

® o] A=1175 mm?

j—
120 mm

Solution
Step 1: Assumptions

In this example we have two unknowns a, d (4, is given). Thus the calculation
of a can proceed immediately

Step 2: Calculate a
Assume that a<ts
0.67 f,,aB 4 f,

LS 1.15
0.67x22.5x420xa 1175 400
15 TS
a=96.82 mm

Since a > t; we can use the apbroximate equation (Eq.3.33) to find “d”

Step 3: Calculate d

A f’ t . .
M =—Xig——=<{ ... 3.33
“T 115 ( 2] (3.332)
380%10° =M(d _&J
1.15 2

d =969.8 mm ———(1)

M, =M(d _%) ...... (3.342)

1.5

197

380x10° =

0.67x22.5x420x80 (d _§9)
1.5 2

d=1165 mm —-——(2) -

Take the largest d from (1) and (2) ——d = 1200 mm

420 0.67x22.5

! - - 1.’5__ C

x| Part to be neglected
< ¥ [N Se =~ Q
_ 5
A,
""" [0-00 T=A, £/1.15
FT’I -
Step 4: Calculate Agnin

1.1 )

——120%1200 =396 mm

400 _ .

cmin = Smaller of =396 mm® <A, ..ok

1.3x1175=1526 mm*

* 1.1 is bigger than 0.225\/17; )

Sfep 5: Check Agtmax. Mut,mux

To determiné the exact position of the neutral-axis, assume (a>t;).

A, 1, 0611, (B-b)t, 067f,ba
115 1.5 1.5 -

1175x400 0.67x22.5x (420~120) 80 + 0.67x22.5x120a

15 1.5 1.5
= 138.9 mm
izwzo.ng
d 969.8

For f, = 400 N/mm? it can determined from Table 2.1 that Cuax/d = 0.42
Since ¢/d < Cai/d, thus steel yields, A;<Ag max and My<Mytmax --- -+ ok

114




Example 3.15

| The figure below shows a simply supported in which the midspan section has a
T-shape. Compute the area of steel for the T-section shown in figure. f,, = 30
N/mm’ and f, = 360 N/mm?

P,=80 kN

w,=30 kN/m’

‘ I i
C |
T
E 100 mm
=3
3
L N As
I
120 mm

Solution
Step 1: Assumptions
Assume that the neutral ax_is inside the flange (a<ts)
Step 2: Compute a
0.67 f., Ba_4 [,
1.5 1.15

0.67x30x1200xa A x360
1.5 1.15

a= 0.019 A,

Step 3: Compute A

The critical section is at mid span

M

u

2
_ 30;5 +80x§.=193.75 kN.m

Assume a<0.1d, thus use a = 0.1d, use Eq. (3.27.B)
M, =4, f,(08264d) ' '

193.75x10%= 4, x360x 0.826x 600

A, = 1086 mm’
a=0.019 (1086) = 20.6 mm
a (20.6) <t;(100) our assumption is correct a<ts

a(20.6) < 0.1d (60) our assumption is correct a<(.1d

Step 3: Check Agpin

= T 120% 600 = 246 mm”

0.225 30
360

A

s min

1.3x1085=1410 mm?

Step 5: Check At max, Mut max
From Table 2.1 cpa/d = 0.44
a/d=0.1 — ¢/d=0.125
Since ¢/d (0.125) <Cpua/d(0.44) then My<Mumax and Ac<Agmax

=smaller of =246 mm* <A, -0k




Example 3.16 T Sections : | Step 3: Calculate Mu

For the neutral axis position given in the figure below, calculate the required ' , , o)
area of steel and the ultimate moment. Check the code limits for maximum and M, =C (d __)‘L c (d _—)
minimum area of steel and Mupax 0.67x25x (1050—120) 100 100 | 0.67x25x120x192 ( 192
L 1050
| | | : | Step 4: Check Ay
100 | ]’ :
' 1240 : 0.225 725 :
c00 T 5 S IS i _Neutral axis ' 120550 = 206 mm”
: A, . =smaller of =206mm* <4, -0k
i ® 0] A=? » i 1.3x4139.30=5§81mm2-
Tt
Sohution = Step 5: Check Asmax, M
Step 1: Assumptions S ep I: CNeCK Astmax, Mut,max
Given - :fu,f,M,B, b d a C__Z_‘E_O 36
Required :4, M, : d 550

A, M,
Unknowns " From the code cmax/d 0.44

Since we have only two equilibrium equations and two unknowns (4;,M,), , ;
we can proceed.directly without any further assumptions Since ¢/d (0.436) <Cinax/d(0.44) then My<My¢ max and As<Age max

Step 2: Calculate A
d =t —cover=600-50=550 mm
a=0.8 ¢=0.8x240=192 mm
A f, 067f, (B-b)t, . 0.67f,ba

1.15 1.5 1.5 ,
4,x360 _ 0.67x25x (1050-120)100  0.67x25x120x192
115 1.5 1.5

A, =4139.30 mm’

1050 100 0.67x25/1.5

HIIIIIIIIIIIIIII

//07/7///// ///

- 7//////////// /,/,//5 19'2/ ..... C C
o| & <, I ' J
o-¢%e gs>sy/1.15. T=Ax360 /1.15
e '
120

137 . 12R



3.2.7 Design of T-sections Using Curves

3.2.7.1 Development of the Curves

Equilibrium equations are used to generate design aids for T-sections. Assume
that the neutral axis is inside the flange (a<t,)
Taking moment around the concrete force and referring to Fig. 3.17

0.67x f,,
_*r =T
A, o

:;: T=Asfy/1.15

Fig. 3.17 Equilibrium of force for T-section

M, = i’f_fi(d _3) - fs—-fi-‘f(x -i) ........................ (3.48)
1.15 2 1.15

we can also express the moment as the tension force (A, f;) multiplied by the
lever arm (jd). Note that the factor 1.15 is included in the coefficient “J”

, S M= A, S, Jd e (3.49)
Comparing Eq. 3.48 and Eq. 3.49, one can determine J as
1 1 a 1 c

jm=——| I — = ——| 1=04= || .50

J 1.15(1 2xd) 1.15(1 0 dj (3-50)
Dividing Eq. 3.48 by (f., B d°) and noting that in case of T-section AsuBd

M, _ A4 Sy (1_—0.4 -"'—] .................................. (3.51)
f.Bd* 115f, d

From the equilibrium of forces (C = T) Fig. 3.17 we can determine that:

0.67f,Ba A4, f,
1.5 1.15

% 194687 (3.52)

cu

139

Substitution in equation 3.51 gives

_ M, __04109 ¢ (1 -o.4£) .................................... (3.53)
fuBd* 115 d d
Define R, = M, 5
fCll B d
R, 24109 ¢ (1-0.49-) ........................................... (.54
115 d d v
d=CLIMe e (3.55)
Ju B .
Comparing Eq. 3.53 with Eq. 3.55 gives
Cl= | e 2 e (3.56)
R (1 -04 3)
d d
It can be determined from Eq. 3.49 that the area of steel equals
M
e (3.57)
f,jd

Equations 3.50 and 3.53 are the basis of design aids (C1-J) and (R¢-J)

Figure 3.18 shows an example of (C1-J). Appendix A contains (C1-J) and (R1-J)
design charts. .

56 0.68
54 :
5.2 \ . // 070
50 -
4.8 \\ v 072
46 : -

44— N : ) 074
w2 i NS L )i .
5 40 f— AN pd 0.76™

| N L7~
38 +— AN A
36 }— ~ ,/ ' 078
34— 2
32 : ~ 0:80
O ] Creadd (BBbl€ 4-1)]
% R ’

2.8 | /1 8 P P 0.82
26 . E% E : @,31
p YRR ISPV WPENE SIS S s e e LR LB 8

0102 015 020 025 030 035 040 045 050

g cid

Fig. 3.18 C1-J design chart
140



Substituting with the minimum an,;,/d allowed by the code (Cmin/d=0.125) in Eq.
3.56 gives C1=4.85. Thus any value for C1 above 4.85 will lead to ¢/d below the
minimum code value. In this case use ¢;,/d=0.125 and J=0.826.

Fig 3.19 presents different design cases when using (C1-J) curve. In normal

design situations, case I is the most frequently used. When using chart C, the
same rules apply, if R1<0.042 then; use J = Jna, if Ry> 0.042 then determine J
from the curve, and if Rt > Ry, increase d.

C 1 C, [ C; 11
5.4
J
485 485
SN
: : : If C1 under the curve,
If C1>4.85 use cyi/d ) :

If C1<4.85 determine J increase d

Fig 3.19 Different cases for Using C1-J curve

I 1)

Notel: The code minimum value for the depth of the stress block ratio “a” is
0.1d. Thus substituting with a/d = 0.1 in Eq. 3.50 gives jmax

Jo = [ 1-2x0.1]=0.826
Lis 27 7)

Note 2 : To estimate the depth of the b_eafn,’ assume C1 vequals

C1=3-4 for Rectangular beams
C1=4-5 for slabs
C1=5-10 for T- beams

141

3.2.7.2 Using the Design Aids (charts C1-J and R;-J)

Step 1:If “d” is not given, assume C1=5-10 for T-sections and C1=3-
4 for R-sections and determine d from the relation

d=C /—M x
fl.?ll B

If C, in (CI-J) > 4.85 or Ryin (Rr-J)<0.042 then, use J=J;;,,=0.826 and
goto step 4 .

Sfep 2: From the curve determine J value

If ¢/d < cpi/d, then use J=J,,=0.826
If ¢/d > cax/d change the cross section (increase d)

Step 3: calculate a=0.8 ¢
check whether a<t; or a>t

Step 4: Determine A,

lfaStx"'As =_AJ“__.
f,Jd
4, =
M
if a>t A

T 7S (d—1,12)

Step 5:Check A, min

0225 ff,, ,
=smaller of 5,

1.34,

A (use bnot B i_n. this relation) ,

s min

Note: Both (C1-J) and (Ri-J) can be used for designing a rectangular section by
replacing B with b :
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Example 3.17 (a<ts)

The figure shows a T-section that is subjected to an ultimate moment of a value
of 220 kN.m. Using C1-J, calculate the required depth and area of steel.
f,, =25 N/mm’ and f, = 360 N/mm’

_Li 1500 mm |

Solution
Step 1: Determine d

Assume C1 =10 mm as a first trial

220%10°
d=10 =7 5 == —_
VZsx1500 = (63 mm say d=800 mm  and t=850 mm

Using leJ, one can find that
Ci =10.0 > 4.85 (out side the curve)

C 7
. ¢
J
4.85
—t
Sy
;)E » J‘I’\'lﬂX

0.125

Step 2: Determine J and check c/d limits

Use Cmin/d and J = J 0 = 0.826
because ¢/d <c/d, the condition that A;<Agsmax 18 satisfied

“w_u

Step 3: Compute "a
a=0.8 (0.125) 800 = 80 mm < t,(100mm) a<t,
Step 4: Calculate area of steel, A

The stress block is located inside the slab, continue using the following

relation
A, = M,
f,Jd
6
- 22010 _ 924.8 mm”® 2@ 25)
¥ 360x0.826 x800
Step 5: Check Agmin
%\/—Z—S—IZOX 800 =300 mm*
360
A, win =Smaller of : =300 mm* < A, -0k

1.3x924.8 = 1202 mm>

1500 mm

100 [ _l

850

AF2025 |e @

i
120

Final Design




Example 3.18 (a>ts)

Compute the depth and area of steel for the T-section shown in figure if it is

subjected to an ultimate moment of 380 kN.m usmg C1-J curve.
f,, = 22.5 N/mm’ and f, = 400 N/mm’

420 mm
1 J
qr |
M,=380kN.m 80 mm l ‘
A,
[ X J
f—
120 mm

| Solution
Step 1: De'l'ermme d
‘Assume that C1=5.0

380x10° : ) ' |
d=5x. /"7 -1 = / =
x "22.5><420. 002 mm say d= 1000 mm and t=1050 mm

C1 =5 > 4.85 (outside the curve), usevc/dmin

C |

4.85

Crnin/d

0125 T

145

Step 2: Determine J and check c/d limit

Use Coin/d
c/d=0.125
Because ¢/d <Cpa,/d, then A<Agmax and My<Mmax

Step 3: Compute “a"

a=0.8 (0.125) 1000 = 100 mm > t,(80mm) ............ (a>t,, outside the flange)

Step 4: Calculate area of steel, A

Since the neutral axis is outside the flange, the part of the compression
force in the web will be neglected and code approximate equation as

follows.
.
77, /1.1514(21 S 400/1.12:)(:(:(())0—80/2) =138 mm”
Step 5: Check Asmin
Ly
A, =smaller of =330 mm? <A, -0k

1.3x1138 = 1479 mm’?

*Note that 1.1 is greater than 0:225+/22.5

14A




3.3 Design of L-Sections

L-sections are often encountered in external beams of reinforced concrete
structures. If such a beam is connected to a slab it will be only allowed to deflect
in the vertical axis and the neutral axis will be very close to horizontal as shown

Fig 3.20A. The analysis in this case is the same as T-beams except with smaller-

width Eq. 3.25.B. However, if the beam is allowed to deflect in both vertical and
horizontal directions (isolated beam), the neutral axis will be inclined as
indicated in (Fig. 3.20B). Since the applied loads do not cause any moments
laterally, the compression and tension forces must be in a vertical plane as the
applied loads as shown in Fig. 3.20B.

~%
o
A T
o 0o o} _
| b ’
A- L-section connected with slab B-Isolated L-section

Fig. 3.20 Neutral axis position in L-sections

Fig. 3.21 presents the forces and strain for a reinforced concrete isolated L-
section. It can be easily determined that the distance X1 equals 1.5 b. The force
in the compression zone equals the area of the compressed zone multiplied by
the concrete stress as follows

C= 9617—5/’_ (i{'z—y‘) ............................................ (3.58)
T=4 I% .................................................... (3.59)

The second equilibrium equation can be computed by taking the moment around
the concrete force. The lever arm in this case is the vertical distance between the

tensile force and the center of gravity of the compressed triangle. Thus, the .

internal moment equals

147

X;=15b

23X, 13X=b/2
F_—-_.,_._—'

~ 13,
~C.
~ % ~. 4
LA
A o o o
b\ ~. T=A[£/1.15

Fig. 3.21 Stresses and strain for isolated L-section

Example 3.19 illustrates the calculation of the ultimate moment capacity of L-
section using the first principle, while example 3.20 shows the simplified
procedure using design curves.

Photo 3.7 Beam-column structural system
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Example 3.19

For the L-section shown in figure determine the capacity of the section
knowing that the beam is not laterally supported (isolated), knowing that

f,, = 25 N/mm®, f, = 360 N/mm’

!

800 mm""l

e o o AF1200mm’

p—
200 mm .

Solution .
Step 1: Compute Y,
From the geometry X; =1.5b =300 mm

co 067 fu (XY,
15 \ 2

T=4, 1y =1200 360 =375652 N

1.15 115
SinceC=T
0.67x25 (30
375652 =~ (300”‘
: 15 2
Y, =224 mm

Step 2: Compute M,

Take the moment around the compression force C _

M :As_f;'.(d_l,!.)
“ 115 3

M, = % (800——2—?—] =272.5%x10° N.mm =272.5 kN.m

Step 3: Check steel stress

8= tan“(-zﬁ) =36.74"
300

o = JL _224% 080 st hmm
0.8 0.8

d,=d cos 8 =800xcos 8 =641 mm

or directly ¢/d=Y;/d=280/800=0.35 ,

Since ¢/di(0.35)<Cna/d(0.44), f, = £,/1.15 and A;<Agqax --.0.K

Ci/ dl=035

X;=300 mm
200 100

- : _\‘ '

d=800 mm

1200
N

p—
200 mm

Forces and strain distributions

140
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Example 3.20

to M, =120 kN.m using R-J curve.
feu = 35 N/mm?’ and £, = 400 N/mm’

600 mm

. I J1—00
§ ' T
g
A,
® ®f 120 mm
—

Solution
Step 1: Assumptions A
. Assume that the neutral axis inside the flange (a<ts)
Step 2: Determine Ry
s" .
M,  120x10 =0.0357

-

| Step 2:Determine J and check ¢/d limits
Use Crin/d=0.125 and J = J,;,,, = 0.826
because ¢/d <Cy,,/d, the condition that A <A . is satisfied

Compute the area of steel for the L-section shown in the figure if it is subjected

vRT = 2 2 -
f.Bd 35x600x400°
" v Rp<0.042usec/d
0.826
J .
Re |
: ]
i Ry |
0.0357 . 0.042
c/d

" _n

Step 3: compute "a
a=0.8 (0.125) 400 = 40 mm < t,(100mm) a<t;

Step 4: Calculate area of steel, A
- The stress block is located inside the slab, thus

6 :
= 120107 . _ 508 gy
400 0.826x 400

Choose 4 @ 18 =1018 mm?’

| Step 5: Check Agnmin

0.225

V35 1 20% 400 = 160 mm?
400 i

A, =smaller of S
' 1.3x908 =1180 mm?®

600 mm

400 mm .

‘e e
e of o
-

120 mm

Final Design
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=160mm* <A, -0k
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SHEAR IN R/C BEAMS

Photo 4.1 Yokohama Landmark Tower, Japan.

4.1 Introduction

Reinforced concrete beams resist loads by means of intemal moments and-
shears. In the design of reinforced concrete members, moment is usually
considered first, leading to the dimensions of the cross-section and the
arrangement. The beam is then proportioned for shear.

1872



"Because a shear failure is sudden and brittle, the design for shear must ensure
. that the shear strength equals. or exceeds the flexural strength at all points of the
beam. This chapter presents the shear behavior and design of relatively slender
(shallow) beams. More advanced topics related to the strength and behavior of
~ slender beams can be found in Chapter (7). The behavior of deep beams is

-". presented in Volume (3) of this text.

4.2 Shear stresses in Elastic Beams

The beam shown in Fig. (4.1) is acted upon by a system of loads which lie in a
plane of symmetry. The infinitesimal slice of length dx is bounded by the two
sections 1-1 and 2-2 which are subjected to bending moments M and M+dM
and shearing forces Q and Q+dQ (Fig.4.1c), respectively.

ol L
| Bk

L A

0D -7

#
= Q+_Q‘_ | . =, -
(© o ’ d)

‘Fig. 4.1 Shear stresses in an elastic beam

The compressive forces on the hatched area in Fig. (4.1d), which are the
resultants of the normal stresses induced by the bending moments, are indicated
by the two forces C and C+dC. Investigating the §quilibﬁum of the upper
portion of the infinitesimal slice, it is evident that there should be horizontal
shear stresses in order to equilibrate the force dC.

AO=GbAX cermmrreeeeesessesessmreeensssssrasissssssesse @1
dc -

ot D aeeeeeeessrseeevsesaneeasasnsrannransnnrrsasnansaen 4.2
—=¢b 4.2)

fi= - Z eerrereeeiennieeieentass et nsesas 4.3)
But, the compressién force C equals
M M ’
c=f, dA = sz_ A =Sy e SO (44.2)
Hence,
9C_4d fr qaSr B i (4.4.b)
dx dx I dx

Substitutiﬁg from Eq. (4.2) and noting that dM/dx = Q, one gets

25,

coetreseseceeessssserm e sera s s ase e 4.5
=Ty : 4.5)
where _ . -
Q = shear fpr_ce acting on the cross section.
I = moment of inertia of the cross section. o
Sy="the first moment of hatched area about the y-axis.
b = width of the member where the shear stress are being calculated.

For an uncracked rectangular beam, Eq. (4.5) gives the distribution of shear

 stresses shown in Fig. (4.1b).
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Considering the equilibrium of a small element in the beam, it follows that the
horizontal shear stresses should be accompanied by vertical shear stresses of the
same magnitude as the horizontal shear stresses. The elements in Fig. (4.2-a) are
subjected to combined normal stresses due to flexure, f; and shearing stresses,
q- The largest and smallest normal stresses acting on such an-element are

- referred to as principal stresses. The principle tension stress, fiua., and the
principal compression Stress, fuu, are given by:

T -§+ (g) F@P oot (4.6)
oo —-g-— gj F@7 eorereeseeeeeseee et “.7)

If the principle tensile stresses exceed the tensile strength of concrete, cracking
occurs. The direction of cracking at any point is perpendicular to the direction of
the principle tensile stress at that point. :

- Obviously, at different positions along the beam the relative magnitudes of g
and f change, and thus the directions of the principal stresses change as shown
in Fig. 4.2c. At the neutral axis, the principal stresses will be equal to the shear
stresses and will be located at a 45° angle with the horizontal. Diagonal
principal tensile stresses, called diagonal tension, occur at different places and
angles in concrete beams.
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T

(a) Flexural and shear stresses acting on beam elements (b) Distribution of shear

and normal stresses

(c) Principal stresses on beam elements

Fig.4.2 Normal, shear and principal stresses in homogenous uncracked beam

Photo 4.2 Burj-Dubai during construction
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4.3 Shear Stresses in Cracked R/C Beams

The general formula that gives the distribution of shear stresses in homogeneous

sections subjected to simple bending may be applied to reinforced concrete

sections. If one considers the virtual area of the section which consists of the

area of concrete in compression plus n-times the area of the steel reinforcement.
Q Snv

Y et renaens 4.
=T1b 4.9)

-where S,, is the first moment of area , I,, is the moment of inertia of the full
virtual section about the center of gravity and b is the width of the cross section.

It may be observed that, on the tension side of the section, S, is calculated

using the equivalent area of the tension steel reinforcement only.

Consider an infinitesimal portion of length dx of a reinforced concrete beam
with rectangular cross section subjected to simple bending, where the bending
moment is M on one side and M+dM on the other side, as shown in Fig. (4.3).
The corresponding compressive forces, which are the resultants of the induced
normal stresses, are C and C+dC, respectively. '

Z
' 12

?’l o ) B
=

T+dT .« o

+—P & Qpay

-+

- Beam segment ' _ Cross section  Shear stress
distribution

Fig. 4.3 Shear stresses in cracked reinforced concrete beams
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' wnd Web- " Flexural and - Web- end

Then one should have

A AC= gy DX wernrrvearreeesenienessnssssansssssasisases (4.10)
Noting
M
ST et e s 4.11
. @11
where jd is the arm of the internal moment. Then one gets
4O e (4.12)
jd -

The distance jd may be taken to be approximately 0.87d.

For routine design, shear strength in reinforced concrete beams is commonly
quantified in terms of a nominal shear stress, q, defined as

4.4 Behavior of Slender Beams Failing in Shear
4.4.1 Inclined Cracking

Two types of inclined cracking occur in concrete beams; web shear cracklng and
flexure-shear cracking. These two types of inclined cracking are illustrated in
Fig. (4.4). Web-shear cracking begins from an interior point in a member when
the principal tensile stresses due to shear exceed the tensile strength of concrete.
Flexure-shear cracking is essentially an extension of a vertical flexural cracking.
The flexure-shear crack develops when the principal tensile stress due to
combined shear and flexural tensile stress exceed the temsile strength of
concrete. It should be mentioned that web-shear cracks usually occur in thin-
walled I beams where the shear stresses in the web are high while the flexural
stresses are low. : : o

NW/ 43&&-} T

support | Flexural-Shear | Shear - Flexural-Shear - Shear support

_Fig. 4.4 Types of cracking in'reiliforced concx;efe beams
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Traditionally, Q, is taken equal to the failure capacity of a beam without
stirrups. Since beams without stirrups will fail when inclined cracking occurs,
0.is equal to the inclined cracking load of the beam without stirrups.

4. = i
4.2 lqternal Forces in Beams without stirrups

The forces-transferri
. rring shear forces a incli
stirrups are illu N cross an inclined crack in a :
across th Strate.d in Fig. (4.5). In this figure, Q, is th beam without
e crack by interlock of the ag > 2a e shear transferred

crack. O, and O, are the horizontalgreiate particles on the two faces of the
: and verti :
respectively. The shear force is resisted by: ertical components of this force,

In general, the inclined cracking load of. a beam without stirrups, and
consequently Q, , is affected by:

e The tensile strength of concrete: the inclined cracking load is a function
of the tensile strength of concrete. As mentioned before, the state of
stress in the web of the beam involves biaxial principal tension and
compression stresses as shown in Fig. 4.2b (see Section 4.3). A similar
biaxial state of stress exists in a split cylinder tension test (Fig. 1.7).
This indicates that the inclined cracking load (or the shear carried by
concrete) is related to the tensile strength of concrete.

Qe 1
» the shear in the compression zone

Q.y, the vertical component of the shear transfe

1 d ac; )
of the aggregate particles on the two faes :)rt?thz;c;;)as:kthe crack by interlock

Qq i
» the dowel action of the longitudinal reinforcement

¢ Longitudinal reinforcement ratio: tests indicate that the shear capacity
of beams without stirrups increase with the increase of the longitudinal
reinforcement ratio. As the amount of the steel increases, the length and
the width of the cracks will be reduced. Hence, there will be close
contact between the concrete on the opposite sides of the cracks;
improving the shear resistance by aggregate interlocking.

e Shear-span-to-depth ratio (a/d): the shear capacity of beams without

stirrups is a function of the shear span, a, to the depth, d, of the beams

(see Fig. 4.6). In general, concrete beams can be classified into slender

T beams and deep beams. Deep beams are those having small (a/d) ratio.

They are much stronger than slender beams in shear. Detailed

discussion related to this subject can be found in Chapter (7) in this

‘ volume and in Volume (3) of this text.
Fig. 4.5 Internal fo i : .
. rees fn a cracked béam without stirrups . P P
a a
It is dif] uanti .
- ifficult to quantify the contributions of Qezs Quy»and Q. In desi :
) s 5 . e R i
umped together as Q. , referred to as shear carriec;/ by conciet e fese 1 d
. . : e.
chch+Qay+Qd

Fig. 4.6 Shear span —to-depth ratio (a/d)
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1

4.4.3 Behavior of Siender Beams with Stirrups

The purpose of web reinforcement is to prevent sudden shear failure and ensure
that the full flexural capacity can be developed. Web reinforcement may either

be consisting of vertical stirrups, inclined stirrups or bent bars as shown in Fig.
4.7).

Fig. 4.7 Iintérnal fpfées in a cracked beam with stirrups

Measurements have shown. that web reinforcement is almost free from stress

prior to the formation of diagonal cracks. After diagonal cracking, web

reinforcement affects the shear resistance of the beam in three separate ways:

1 Part of the shear force is resisted by the web reinforcement traversing the
crack. : ‘

2 The presence of web .reinfor’e_ém_ent restricts the growth of diagonal -
cracks and reduces their perietration into the compression zone; and
hence increases the part of the shear force resisted by the compression
Zone. '

3 The presence of stirrups enhances the dowel action.

Thélfgii;(:s in a beam with stirrups and an inclined crack are shown in Fig. (4.7).

The shear transferred by tension in the stirrups is defined asQ; . Assuming that n

is the number of stirrups crossing a crack, s is the spacing between stirrups, the
crack angle is 45 degrees, and that the stirrups yield, then

B e s siosseresessessees (4.16)
S
 Agfyd

Qs =nAg fy= S‘SY .................................... 4.17)
where A
Ay area of stirrups
Shear stress carried by stirrups g;

B (4.18)

° bxd

Substituting with the value of Q; in Eq. 4.17 gives

A, xfyxdls A, xf,

4= bxd " bxs

Photo 4.3 Diagonal cracking in the shear span
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| -. | ithi i h <d/2, the critical
4.5 Egyptian Code’s Procedure for Shear Design 3. If a concentrated load acts within a distance (a w e;e a11 » tho orites
| o section (A-A) is taken at the face of the support. The code allow.

4.5.1 Critical Sections for Shear of the effect of this force on the shear design by multiplying its effect by (a/2d)

: i ‘as shown in Fig. 4.8¢.
The critical sections for shear design are as follows: : ass g
1. The critical section is taken at a distance (d/2) from the face of the )
column provided that column reaction introduces vertical compression in the ' P reduce the effect of this load (p x a/2d)
support zone and no concentrated loads act closer to the support than half the

beam depth (Fig. 4.8.a). In such a case, the shear reinforcement obtained for

the critical section shall be kept constant through the distance from the ‘ . :
. . A \ critical section
critical section to the support. A

D

cal,

1

1A a2

' A
)
A L critical section

d/2,

Fig. 4.8c Case of concentrated load (a<d/2)

Fig. 4.8a Critical section for shear (general case) 4. The critical section is taken directly at the face of the column in case the

column reaction introduces vertical tension in the support zone as shown in Fig.

2. Ifa conceﬁﬁrated load acts within a distance (a) where (d/2<a<2d), the 4.8d.
critical section (A-A) is taken at (d/2) the face of the support. The code
allows a reduction of the effect of this force on the shear design by
multiplying its effect by (a/2d) as shown in Fig. 4.8b.

Tension .
rr?gmber v A
p ,reduce the effect of this load (p x a/2d) . ]
2 ‘/ d/2<a<2d ' (_ . ey . _) L d/2
Al £y . A critical section crmcal'sectlpn A
] ‘

—

L critical section

>

Fig. 4.8d Case of a beam supported by a tension member

Fig. 4.8b Case of concentrated load (d/2<a< 2d)
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4.5.2 Upper limit of Design Shear Stress

In order to avoid shear compression failure and to prevent excessive shear

l(;racking, the ECP 203 limits the design ultimate shear stress to the value given
y:

Qumax =07 [~ <AON /mm?® oo
ch ....... (4.20)

The upper limit of gne in Eq. 4.20 is 4 N/mm?

If the ultimate shear stress 9. ) 9y m> the concrete dimensions ‘of the cross

section must be increased.

4.5.3 Shear Strength Provided by Concrete

The code evaluation for the shear strength provided by concrete is as follows:
No axial force .

Combined shear and axial compression

Applying compression force on the cross section will increase the area of

concrete in compression and thus enhancing the shear capacity. The ECP 203

.gives the following equation
_ PY] .
S, ={1+0.07 == | | <1.
o] o

G =5, %024 f;— ................................ enn(8.22)

_C_om bined shear and axial tension

: Applying.ten'sion force on the cross section will decrease thébarea of concrete in
compression and speeds up concrete cracking. The ECP 203 gives the following

equation
5= [1_0‘30(5_)}
AC

g =6,x024 [fa ; (4.23)
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Equations 4.22 and 4.23 indicate that the ECP 203 considers the effect of the
axial force when calculation the shear strength provided by concrete. An
externally applied axial compression force will result in large compression zone
leading to enhanced g, The opposite would be true for a beam subjected to
axial tensile force plus shear and bending.

- 4.5.4 Shear Strength Provided by Shear Reinforcement

The design ultimate shear stress (g, ) is compared with the nominal shear
ultimate shear strength provided by concrete (g.,). Two cases are possible:

a) q, < qcu » then provide minimum web reinforcement.
b) q, ) gy » then provide web reinforcement to carry g,

Qoo =00 = 0.5 Gy revmrscresmrssesseessesssesse (424)

The code allows the use of three types of shear reinforcement:
1. vertical stirrups :

2. inclined stirrups

3. bentup bars

These types are shown in Fig. 4.9

N S

Inclined stirrups Bent bars

Vertical stirrups

" Fig. 4.9 Web reinforcements of reinforced concrete Beams

In case of using inclined stirrups or bent up bars, the inclination angle with the
bearn axis shall not be less than 30°. :

The amount of the shear reinforcement is computed according to the
arrangement of the web reinforcement as follows:
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> A: Shear stress provided by vertical stirrups
g AU/
) St ) b . S
where :

Ag = area of all vertical legs in one row of stirrups. For two branch stirrup
(45;) is twice the area of one bar.

f, =yield strength of stirrups.
b = beam width.
S = spacing between stirrups (< 200mm)

The previous equatiox} contains two unknowns, Ay and s, thus either one should
be assumed to determine the required shear reinforcement.

If the stirrups spacing are assumed, then Eq. 4.25 becomes

-_— qSM xbe
5t Ty, T

The area of one branch is determined by

A A ‘
stonebranch) = et . (4.27)
where # is the number of branches

If the stirrups area is assumed, then Eq. 4.25 becomes

S:M

oy S 200MI (4.28)

> B: Shear stress provided by inclined stirrups

In case of using stirrups inclined at angle o with axis of the member

A \S,
su 2%4;/}/;) (sine + cos ) RO (4.29)
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> C: Shear stress provided by vertical stirrups and two rows or more of
bent-up bars

In case of using two rows of bent-up bars inclined at angle o with axis-of the
member accompanied by vertical stirrups, then the calculation is as follows:

1. Calculate the total design shear stress gy, given by:

Goo =y = 0.5 Goyenvmmrmmirinieinisncceee (4.30)

Assume the vertical stirrups area (4;) and spacing (s) then calculate the
contribution of the vertical stirrups g, as follows

A4, (fy/lys) (4.31)

iy T T s
2. Calculate the amount of remaining shear stress that should be carried by
the bent-up baps gsus as follows

Goun = Qi = Gaus wosenessresssnsssonssssnnssssssnssonsnscnsneees (4.32)

3. Calculate the required cross sectional area of the bent-up bars A4,

q:ul: X bX N
Ay =Tt ZOXS e 4.33
* (f, /y,)(sina + cosa) ( )

If the angle (« ) is 45°, Eq. 4.33 becomes

_ G xbxs (434)
sh i :)./7S)ﬁ

A

>  D: Shear stress provided by vertical stirrups and one row of bent-up bars

In case of using one row of bent-up bars inclined at angle o with axis of the
member, then the previous procedure is followed. However, the required cross
sectional area 4y, is calculated from the following equation

e XOXd e (4.35)
Jo v, xsin a

sh

in such a case

Qo <0.24 ’Q , If the angle («) is 45°, Eq. 4.35 becomes
Ve

y 2\/§xqsuhxbxd (4.36)
T s .
e
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4.5.5 Code Requirements for Shear Reinforcement

I- Ab minimum amount of shear reinforcement is required by the code. It is given
y

04

ASI (min) = f
¥

B oS weeeeeeeeeeeeeseeeeeeseeeeeeneeeeneneeeen (4.37)

where b is the width of the section as defined in Fig. 4.10.
But not less than ’

Astminy =0.0015 b s for mild steel 24/35
Astmin) =0.0010 b.s for ribbed high-grade steel
but not less'than 5 ¢ 6 /m’

b| bZ

l_~———| ' b =b,+b,
)
v a-solid section b-box section

- Fig. 4.10 Definition of 5 for solid and boxed sections

2- The area of steel Ast(min).calculated using Eq. (4.37) may be reduced for
beams of width exceeding their depth as follows:

Ay uiny TEAUCEd = A4 X Gu

‘st (min)
ci

where <1

U
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3- For beams with web width equal to or greater than 400 mm, and in beams

of web width exceeding their height, stirrups of at least four branches
shall be used. The maximum distance between branches should be less

than 250 mm as shown in Fig. 4.11.

Stirrups J

1 t ¥ ¥
250 mm (max) 250 mm (max)

[ - b !
14 . i

Fig. 4.11 Stirrups arrangement for beams having b$t or b> 400 mm

4- For reinforced beams of depth of not more than 250 mm, the code

requires that the design shear stress be resisted by concrete only
according to the following relation

g $006 8 e rn(4.39)
2

~ 5- The maximum spacing between vertical stirrups shall not exceed the

following value

' 6- The maximum spacirg between rows of bent up bars is as follows:

<d
< 1.5d  providedg, < 1.5¢,,
or <2d provided g, < 9.

s max

7- Construction joints should be generally avoided at location of high shear ’
stresses. Otherwise precautions related to shear friction should be followed.
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Example 4.1

Flgu?e (EX. 4.‘1) §hows a simply supported reinforced concrete beam that carries

a uniformly distributed load having a factored value of 60 kN/m and a central

concentrated load of a factored value of 100 kN. It is required to carry out a

shear design for the beam according to the following data:
- Beam width = 300 mm

- Beam thickness = 700 mm
- faw=30N/mm’and f, =240N/mm’

LE 350m : 350m 'EE&l
(a) Beam Layout
100 KN  coknm
é{éﬁ”lJHHHHHHHHHHHHHQ‘§§
L275 - 7.50m | ? e
®) Statical System -
275 kN
‘ | o
50KN
275 KN

(¢) Shear Force Diagram

Fig. EX. 4.1
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Step No.1: Determine the design shear force

The critical section for shear is located at d/2 from the face of the support.
Assuming concrete cover of 50 mm

d =1t —cover =700-50 =650 mm

The critical section is located at a distance that is equal to 325mm from the face
of the support. :

Reaction at the support = W; L +§ _80 );7"5 + %9 =275kN

d col.width
2

Q, = Reaction — wx (5 + 0.65 0.5

=275 —60><(——— +—) =240.5kN
2 2

Step No.2: Check the adequacy of the concrete dimensions of
the section

The concrete dimensions of the section are considered adequate if the shear
stress due to the design shear force is less than the ultimate shear strength.

0,  2405x10°

q,= = =1.233N/mm’
bxd 300x650

=0.7 e <4AN /imm’®
Ve

qu max

G =O.71E£5=3.13N /mm® <40 N /mm*

‘=3.13N /mm’

qu max

Since g, (g, the concrete dimensions of the section are adequate.

Step No.3: Determine the shear stress carried by concrete

q, =024 ’L—“— = 0.241’% =1.073N/mm’
Ve .

Since the shear stress is greater than the shear stress carried by concrete, web
reinforcement is needed. :

Step No. 4 Des.ign the web reinforcement

Asy =4u ~0.5q0,




q,, =1.233 —0.5x1.073=0.697 N / mm*

4 = Guxbxs
e
Assume that the stirrups spacing is 150 mm
- 0.697x300x150 _ 502 mum?
240/1.15

:.Required area of one branch = 15(2)—‘2 =75.1mm* , choose ¢ 10 =78.5 mm’

Use - 10@150mm (7 ¢ 10 m’)

Check min shear reinforcement

fn =22 =24 _ 000175 0.0015...0k
"= 240

Ayiuivy = Huin Xb x5 =0.0017x300x150 = 76.5 mm* < (A, provided= 2 X 78.5).....0k

! ! !

i i i

i i ]

! I g -

! 1.8 L

: 3 L

i I g |2

{ L 1 38

i 13 i

i i & i §

= i

v ! i

e ! !

! i i

" shear stress provided L .
asstxmed constant by stirrups shear stress pravided

'2 ! by concrete
1.233

1=~

Qeu=1.07

|

It should be mentioned that using the amount of stirrups obtained from the
| design of the critical section along the whole span is not economic. A practical
approach to get an economic design is to use the minimum required- amount of
stirrups starting from the section at which the shear stress -equals gq.. To
| compute the location of this section, the following calculations are carried out

The shear force carried by concrete equals

0., =q,, xbxdi=1.073%300% 650 =209.3kN
CH < . ’ ‘

!
H
‘ .
i i i
i i L g
o H i B
B Lo
| — - ¢
i E i 3
4.50 i5 3.50 :
! : 3.75 i
Ne——
' | ] !
275 1 ! ch=209.3 :
\ i
, ‘ 50
| [ -
R y o x

Shear force diagram

"Referring to the above shear force diagram and similarity of triangular

 x2093-50
375 275-50
x=2.65m

y=3.75-2.65;1.09mz‘1.25m ‘ .
The calculated stirrups (7 ¢ 10 m’) is provided in the distance y, while a |
minimum stirrups (s=200 mm) is ptovided in the distance x

A s = f Xbx 5 =0.0017x250%200 =85.0 mm® (for two branches)

st {nin) .
Area of one branch =42 mm’ (use ¢ 8 =50 mm®)
Use (5¢8m") »
' (7¢10m’) (5 ¢8m')

1.25 _ 2.25
]

050 3.50

I 00 B oo } OO

Final shear design




Ekample 4.2

Fxgl%re (EX.. 4.2) shows a simply supported reinforced concrete beam th
carries a uniformly distributed load having a factored value of 140 kN/m ‘;t
is required to carry out a shear design for the beam according knowin, tfla:
feu =30N/mm®and f, =360 N/mm? for the stirrups. :

_________________ ]
_ [IZIIDoIIIoIIooIIIon l
]
T LT
I1.0! 1.50 ! ‘ _800m | 1.50 ~I1.o|
é 0.175 0.175 S
0.60 0.60
Sec2-2
(a) Beam Layout seetd
EEERERRRRNEN! T
i
& IRERERRERRRERRNENY
840 kN ’ '
{__ 12.00m 84ORNT
. (b) Statical Syst.em o

(c) Shear Force Diagram

840 kN

Fig. EX. 4.2
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Step 1: Determine the design shear force

Due to the fact that the girder has a variable cross section, the designer has to
check its shear capacity at more than one location. In this example two sections
shall be examined as follows:

The critical section in the solid part is located at d/2 from the face of the

support.

Assuming a concrete cover of 100 mm
d =t —cover =1100~100 = 1000 mm

wx L 140x12

Reaction at the support = =840kN

1.0 1.0

d  colwidth) ¢/ 140x ——+——)=700kN
5 2 2

0,, = Reaction—w x (5 +

The critical section at the hollow part (the box section) is located at the section
where the hollow part starts (x=1.5m).

0,, = Reaction ~w x(x +QI—'WEZ—‘M)=84O—14OX(L5+1—'ZQJ=560kN

Step 2: Check the adequacy of the concrete dimensions .

| ¢,..=07 F—“’—S4.0N/mmz
. IA

o :0.7‘;—13%=3.13N Imm?® <40 N [mm®

Gumae =3-13N [ mm?

Critical section 1-1

For the critical section at d/2 from the face of the column

4= Q. - 700x1000 »
bxd 600x1000

g <q.,m - Lheconcrete dimensions of the section are adequate.

=1.17 N/ mm’

Critical section 2-2

Section 2-2 has a boxed shape and resistance to shear comes from the two webs
each having a width of 175 mm

g, =L 60100y 6y y?
bxd (2x175)x1000

*q2<Gums -~ The concrete dimensions of the section are adequate.
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Step 3: Determine the shear stress carried by concrete

q., =0.24 }Q
e
—0241’13(; =1.073N/ mm?

Step 4: Design the web reinforcement for each section

For Sec. 1-1
Isut = Q1 _O'chu

45y =1.17 = 0.5x1.073 = 0.635N / mm*

— qsul Xb)(ls
st f /7:

-Assume that the stlrrups spacing is 200 mm
4 = 0.635x 600 x 200 = 2434 mm?
360/1.15
The width of the section is more than 400mm, thus requires more than two

branches.

Assuming 4 branches, the area of one branch = — Zi:’i = 61 mm?
n
Use @ 10=78.5 mm”
Use $10@200mm 4-branches
For Sec. 2-2
q:uz = quz - 0'5 qcu
90z =1.60 —0.5x1.07 =1.065 N / mm*
As = qsuz X b xs
Syl o
Assume that the stirrups spacing is 200 mm
| LO6SX(2x175)x200 00

360/1.15 i

Each web is provided with one stirrup that has two branches.

Thus, the area of one branch A, 2814 59 mm*

n 2x2
Use @ 10=78.5 mm?
Use #10@200mm 4-branches

Check min shear reinforcement
04 0 4

Mo =—-—=-j—6—6=000111>00010 .ok
‘min f_;.
Aoy = Hin Xbx.5 =0.00111x 600 200 =133 mm” < (Agi, provided= 4%785)...
sr{min) n
A rgminy = Hoi xbxs—OOOlllx(2x175)x200 77.7 mm?® <(Ast_pmv,ded 4x 78.5)...
—74_'
™ 17
Sec 1-1 Stirrups Details
> 2 $10@200 rmm

(Longitudinal Rft.
is not shown)-

178

.ok

1
$ 8@200 mm
$10@200 mm $10@200 mm
¢ 8@200 mm
1 HC—
Sec 2-2- ' Stirrups Details
(Longitudinal Rft. '
is not shown)
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Example 4.3

Figu-re (EX. 4.3) shows a simply supported reinforced concrete beam that carries
a uniformly distributed load having a factored value of 80 kN/m'.

It is required to carry out a shear design for the beam using bent-up bars and
vertical stirrups according to the following data:
- Beam width = 250 mm

- Beam thickness = 800 mm

= fu=25N/mm®, f, =240 N/mm’ for the stirrups and f,=400 N/mm® for the
bent-up bars

!0.40[ 6.0m ' !9;9!
(a) Beam Layout
RERRRERERNRRRRRNRRNRNNE '
EERRRRRNEN!
& [ EREEN! 4 i
f 256 KN * 256 KN
| 6.40m |
(5) Statical System |
256 KN

(c) Shear Force Diagram 256 KN

Fig. EX. 4.3

Step 1: Determine the design shear force
The critical section for shear is located at d/2 from the face of the support.

Assuming concrete cover of 50 mm
d =t -cover =800-50 =750 mm

Reaction at the support = W; L_%0 ’;6'4 =256kN
0, = Reaction—wx(%+M) - 256—80x(9'£7—5—+%ij = 210kN

Step 2: Check the adequacy of the concrete dimensions

The concrete dimensions of the section are considered adequate if the shear
stress due to the design shear force is less than the ultimate shear strength.

0, _210x10°
& bxd 250x750

Gy =0.7 f—‘—"— < 4N /mm?
e '

- =O.7"—12—5§=2.86N /mm® <40 N /mm’*

=1.12N /mm*

=286 N/mm®

qu max

Since g, (g, the concrete dimensions of the section are adequate. .

_Step No.3: Determine the shear stress carried by concrete

q, =024 FJ‘— = ().24"—23 =098 N /mm?®
7. 1.5

Since the shear stress is greater than the shear stress carried by concrete, web
reinforcement is needed. '

Step 4: Design the web reinforcement
The web reinforcement consists of two parts: a) vertical stirrups; b) bent—up bars

G =4y 059,
q,, =1.12 ~0.5x0.98 = 0.63 N/ mm’
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Step 4.1: Shear stress carried by vertical stirrups

Assume that a minimum area of stirrups shall be provided

04 04
min = = — = 0.00166 > 0.0015....
Homin = = 240 >k

Assume 5=200 mm

Asiming = Huin Xbx 5 = 0.00166 %250 x 200 = §3.3 mm’

Area of one branch=41.65 mmz, choose $8=50 mm?

o A Uh/r)_ @x50240/1.15
" b 250 200

=0.417 N/ mm?

Step 4.2: Design of bent-up bars

‘ 9sury = 9su -—q:us =063*417 = 0-21 N/mmz

Using one row of bent-up bars and noting that the yield strength of the flexural

steel is 400 N/mm?, the area of the bars equals

4 _N2xg,, xbxd _V2x0.21x250x 750
* fily, 400/1.15
Use 20 12 (=226 mm?)

=160 mm?*

! I
i i

i P

, : N P2

| =

i N -

= . — 3
i i i

! i I E

! . i [

B : 3.00 ;D
—N-L g i
18 !
i3 !
shear str ided |8 i
" eb st essbprovzlq;zlz = shear stress provided !

Y bent-up bars( ) : o by stirrups(5¢8) shear stress provided

40u=0.98

by concrete -
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Example 4.4

Figure (Ex.4.4) shows a simply supported reinforced concrete beam that carries
a uniformly distributed load having a factored value of 70 KN/m and a
concentrated load of a factored value of 90 KN. It is required to carry out a shear
design for the beam according to the following data:

Beam width = 250 mm
Beam thickness = 700 mm
feu=25 N /mm”* and f,= 240 N /mm® .

Inanlas | —L

a

|
|
i

1050 1.00m _5.50m [ 0.50
! { { 1
(a)Beam Layout

90 KN
70 KN
A L T T T O O O T O O T T T b
AN . R AN
125 | 5.75 T
! ] N 1
Ra=318.93 KN ) Ab=261.07 KN
(b)Statical System )
318.93 KN

(c)Shear Force Diagram
261.07 KN

Fig.Ex.4.4
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Step 1: Determine the design shear force

The critical section for shear is located at d/2 from the face of the support.
Assuming concrete cover of 50 mm

d =t-cover =700-50 = 650 mm

The critical section is located at a distance equal to 325mm from the column
face. To get the reaction at the support take ' M, =0

70x(7.0)?
2
SR, =261.07 KN

+90x1.25-7R, =0

g, =Reaction -w x(%_{_c_oli;_zdiJ )

o, =318.93—70x(0—'26§+%) =278.68KN

Step 2: Check the adequacy of the concrete dimensions

The concrete dimensions of the section are considered adequate if the shear
stress due to the design shear force is less than the ultimate shear strength.

_ 0, 278.68x10°
T xd = 250%6%

G =0.7 f& < 4N /mm?
e

G =0.7 ’%:2.86N Imm* <40 N /mm? ———q, ... =2.86N /mm?

=1L.7IN /mm?

Since g, <q,,,, the concrete dimensions of the section are adequate.

According to code; since the Ioad is at distance “a = 1000mm” between
d/2(325mm) & 2d(1300mm), therefore shear stress can be reduced as follows:

a 1000
=q,x—=1.71x
T =955 2%650

=1.32N /mm?
Step 3: Determine the shear stress carried by concrete:

q, =024 [ =O.24‘/£5— =0.98N /mm?
7. 1.5

Since the shear stress is greater than the shear stress carried by concrete, web
reinforcement is needed. '

Step 4: Design the web reinforcement

4. =4, —0.5q, =132 -0.5x0.98 = 0.83N /mm”*
Assume that the stirrups spacing is 150 mm

_9uxbxs _0.83x250x150 ~149.14 mm>
T f 1y, 240/1.15 _
149.14 _
~.Required area of one branch = = 74.57mm*, choose ¢ 10 =78.5

Use #10@150mm or (7 ¢ 10 m")

d
.
-  ©
5 E|s
Elo s
g.2 23
~ Do Ic
N m; o '
b=
3] I
H
e _ | |
o - _ :
£ [~<L T TT'\. ‘
£ T i {
Z |38 : 3
S| 3% ) o i _
8% I I
T NG i
513 !
T o° .

(c)Shear stress Distribution

Check min shear reinforcement

) 2
mm

Final shear design
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4 :%xb xX§ = 0'40><250x150= 62.5 mm® < (A providea= 2 X 78.5).....
51 (min) fy 40
(7¢10m")
—_— ]
l
!
!
!
!
}
i
i
0.50 325 |
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BOND, DEVELOPMENT LENGTH AND SPLICING
OF REINFORCEMENT

Photo 5.1 Reinforced concrete high rise building (San

5.1 Introduction

One of the fundamental assumptions of reinforced concrete design is that at the
interface of the concrete and the steel bars, perfect bonding exists and no
slippage occurs. Based on this assumption, it follows that some form of bond
stress exists at the contact surface between the concrete and the steel bars.
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Bond strength results from several factors, such as the adhesion between the
concrete and steel interfaces and the pressure of the hardened concrete against
the steel bar. '

bond between the two materials. o
The forces acting on the bar are shown in Fig. (5.1b). For the bar to be in
equilibrium, bond stresses, f;, must exist. If these disappear, the bar will pull out

. of the concrete and the tensile force, T, will drop to zero, causing the beam to
fail. :

b- Forces acting on a bar

Fig. 5.1 Bond stress development

5.2 Avérage'Bond Stresses in a Beam

Consider the equilibrium of a segmenf of a beam of length dx as shown in Fig.
- (52).

Then
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df e (5.3)
Yer
From Eq. 5.3 and 5.1, one can get |
..(54
AT =Ty =T} eoveererrseseesarsessesaesesensssssaseassnansssans (5.4)

i b
In order for the bar to be in equilibrium the change in the force dT should be

equal to the average bond stress f; multiplied by the surface arg:a as shown in

Eq. 5.5
AT = fp . D0 X coveieirineiee e (5.5)
e T e (5.6)
Ji b dx Z 0
where ‘ -
> 0 =the sum of the perimeters of all tension
f,  =average bond stress
YCbT = the lever arm of the intemall forces Cand T.

: ’ i i ate of
Equation (5.6) means that average bond stress is proportional to the r.
change in the tension in the reinforcing steel.

(a) Beam » ?

- (b) Moﬁent diagram ) | l
! .
£ !
(c) Bar forces T, =& :__ — T,
P
o
Q | .
. C1E)-
i Q‘
dx
L

' ‘Fig. 5.2 Avefage flexural bond stress
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5.3 True Bond Stresses in a Beam

At the location of the crack, the steel reinforcement carries the tension force
A\yay from cracks, concrete can pick up part of the tension (T) through bond'
act}on. Consequently, tension in steel is reduced between cracks by the amount
resisted by the tensile stresses in concrete £, . It is only at the locﬁtions ot? ;11’1116

cracks that the steel is subjected to tension (T) predicted by Eq (5.2). Figu
(5.3? shows the. variations in the tension force in steel (T), the v:;lria;ioﬁ ingt}::
tgnsﬂe stresses in concrete (£, ), and the variation of the b;nd stress (f,) for a
segment of a beam subjected to a constant bending moment M). ’

Crack

M M
(a) Beam segment e —

(b) bond stresses on bar o

(c) steel tension stress (fs)

[

?

(d) concrete tension stress (f,)

-

(f) bond stress (£)

Fig. 5.3 True bond stresses in a beam
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5.4 Development Length

5.4.1 Theoretical Considerations

The development length of the bar (L;) is the necessary embedment length of
the bar in concrete in order to ensure that the bar is securely anchored by bond
to develop its maximum usable strength. For a bar stressed to its yield strength,
the development length is the shortest length of bar in which the stress can
increase from zero to yield strength, f,. If the distance from a point where the

bar stress equals f, to the end of the bar is less than the development length, the

bar will pull out of the concrete.
The concept of development length is demonstrated by a bar embedded in a

mass of concrete as shown in Fig. (5.4). Equilibrium between internal and
external applied forces leads to:

Tension in the bar = Bond force ................... (5.7a)
2
2Ly @) Ly (5.7b)
4 ys
(¢
o 2Wlrs) (5.8)
4 fp

where @ = the bar diameter
fp = the average bond stress
Ay = cross sectional area of the bar
f, =steel yield stress
L4 = Development length

fy ¢ ¢
—_——,— b 'YS

i L4 l

Fig. 5.4 The concept of development length for bars in direct tension
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Another‘app‘roach to understand the concept of development length is presented
by considering a beam subjected to two-point loads as shown in Fig. (5.5).

Assume that the design tensile force in steel is equal to £, at point (0). This force

zi )tr.ansferr_‘lsd proglressively from concrete to steel over the length L. If the length
18 equal to or larger than the development length I, calculated fi
10 premature bond failure will occur. B L om 3%,

’._._;-

|

BendinglMoment

. F—-——-—-—-__.-

forcesinsteel J d

Fig. 5.5 The concept of development length for bars in beams |

The.necessary dev_ebpment length depends on the following factors:

® The bar diameter.
The conditions of the bar ends.
The condition of bar surface. :
The position of bar in the forms during construction.
The yield strength of steel.
The characteristic strength of concrete.
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5.4.2 Development Length According to ECP 203

In order to develop a tension or a compression force that is equal to the bar yield
force at any section, the Egyptian Code present the following equation for
calculating the development length L,

L e B U)o

.................................... 59
YA (5:9)
where
) = nominal bar diameter
n = 1.3 for top reinforcement bars below which the concrete depth
is more than 300 mm
B = coefficient depending on bar surface condition as defined by _
Table (5.1) _
a = coefficient depending on bar shape as defined by Table (5.2)
fbu = ultimate bond strength calculated from the following equation
Fo =030 o (5.10)
Ve ’

The development length for reinforcing steel bars subjected to tension or
compression shall not be less than:

35 ¢ or 400 mm — whichever is bigger- for smooth bars with hooks
40 ® or 300 mm - whichever is bigger- for deformed bars

Table 5.1 Values of the correction coefficient B

" Surface Condition - .

. Tension Compression
1 Smooth bar. 1.00 0.70
2 Deformed bar. 0.75 . 045

The development length for bundled bars shall be calculated from equation (5.9)
considering the bundle as an individual bar having an equivalent diameter g,.
The equivalent diameter of a bundle consisting of bars of equal diameter shall
be calculated as follows:

o=lag
g =17¢

- In case of using a two-bar bundle

- In case of using a three-bar bundle
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Table (5.2) Values of the correction factor o,

Type End Shape Factor_a
Tension Compression
1-Straight
:%(D 1.0 1.0
L“Ld‘_l
2- Hook of a 180 Bend
o+D/2 D
0.75 1.0
w
t
o
£
=
g
(5]
2 0.75 1.
5 0
5
‘S
&
0.75 1.0
1- Straight bars with no transversal
barinLy
e #@ 1.0 1.0
£ Lo |
g
° 2- Straight bars with one transversal
&E- barinLg
= 0.7 0.7
D
o
o)
3 2- Straight bars with two transversal
barsin L d
Lt ]

D=4 ¢ for steel 240/350.
D= 6¢ for (¢=6-25 mm)
D=8 ¢ for (¢>25 mm)
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The increase in the value of the factor (77) from (1.00) to (1.30) for top bars
below which more than 300 mm of concrete are placed is justified by test
results. These results showed a significant loss of bond strength for bars with
300 mm or more of concrete beneath. This loss is attributed to the tendency of
excess water and air in the concrete mix to rise up and accumulate to some
extent on the underside of the bar, thus, resulting in weaker bond on the lower
part of the bar perimeter (see Fig. 5.6).

: ™ Zones of possible accumlation

of water and air during vibration

(S

- Fig. 5.6 Weak bond strength for top bars

The Egyptian Code doés not deal explicitly with cross sections that are provided
with reinforcement in excess of that required by calculations. However, the first
clause of the code’s section regarding development length states that steel bars
must be extended on both sides of a section by a length that is proportional to
the force in the bar at this section. This statement, effectively, permits reduction
of the development.length when the provided remforcement exceed that
requlred by calculations.

For simplicity, the Egyptian Code allows the use of the development length
(Lq) as given in Table (5.3) instead of using Eq. 5.9 for values of £, greater than

- or equal to 20 N/mm?. It is to be noted that this- length should be increased by

30% for top relnforcmg bars.
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Table (5-3) Development length (L) estimated as multiplier of bar diameter(n=1)"

Concrete Reinforcement Type
Grade Nim? | D eTormed bars /= 400 Nimam | Smooth bars f;= 240 N/mm’
Tension Compression Tension Compression

18 65 40 20 35

20 60 40 33 T

25 55 40 36 35

30 50 40 35 T

> ® 40 35 35

40 . 42 40 35 35

245 40 40 35 T

* In case of using deformed bars with hooks, multiply the previous numbers by 0.75
* The use smooth bars without hooks is not allowed.

Photo 5.2 Bridge deck during construction
(notice the shear connectors in the beam
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5.5 Bar Cutoffs in Flexural Members

5.5.1 The Moment of Resistance of a R/C Beam

The moment of resistance of a R/C section is the maximum moment that can be
resisted by the section according to its concrete dimensions and steel
reinforcement. In other words, it is a property of the cross section. According to
the preceding definition, it follows that the moment of resistance of a reinforced
concrete beam at any section depends on the concrete dimensions and the
amount of steel at that section. ‘ '

The tension force in steel (T) is related to the design bending moment (M) by
the relationship (T=M/Y¢r ). For shallow (slender) reinforced concrete beams,
the lever arm (Yep) could be considered constant. Therefore, it could be

assumed that the required areas of steel at various sections in a beam are
proportional to the bending moments at these sections.

The simple beam shown in Fig. (5.7a) is subjected to a uniformly distributed
load that results in the bending moments shown in Fig. (5.7b).

w kN/m
TN EEEEEREEEEE RN
VAN _ o (a)ﬂ AN
—e AT
1T o
2¢12
_ ] J
4922 '
. ’ il _ 4922
I () |
Sec.1—1}

Fig. 5.7 The concepft of the moment of resistance
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Assuming that the design of the critical section at mid span, which is subjected

to a factored moment M, results in a required amount of steel A, 0f a value

of 1440 mm’. Four bars of diameter 22 mm are chosen to reinforce the critical
section. The area of the chosen reinforcement is 1520 mm”. Since the chosen
area of steel is larger than the required area of steel, the moment of resistance of
the section M, shall be higher than the applied factored moment M,. The

moment of resistance of a reinforced concrete section can be obtained from

A
Y Y G R (5.11)

As(req)

If the required area of steel for the section of maximum moment were used
along the beam, as shown in Fig. (5.7¢), the moment of resistance of the beam
sections would be as shown in Fig. (5.7b). At low moment regions, the detailing
shown in Fig. (5.7¢) results in an uneéconomic design, since the moment of
resistance of the four bars is much larger than the bending moment diagram.
Hence, curtailment of bars should be carried out.

Photo 5.3 Failure of a beam-column connection due to inadequate
anchorage of the reinforcement.
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5.5.2 Curtailment of Bars in Beams

The maximum required area of steel is needed at the section of maximum
bending moment. This amount of reinforcement may be reduced at sections of
smaller moments. As a general rule, bars may be cut-off where they are no
longer needed for flexural strength. Figure (5.8a) shows a better detailing for the
simply supported beam shown in Fig. (5.7a), where two bars of diameter 22mm
are extended past the center-line of the support and two bars of diameter 22mm
are stopped exactly at the theoretical cut-off points. The moment of resistance
diagram for the detailing that involves curtailment of bars is shown in Fig.
(5.8b).

N\ 2¢22 \ 2922

(a)
i i |
] M,
7 L] \ M, of 2¢22
Theoretical - - .
cut-off point \ M, of 4422

(b)

Fig. 5.8 Curtailment of bars in beams

There are practical considerations and sound reasons for not stopping bars
exactly at the theoretical cut-off points. These reasons are:

o The bending moment diagrams may differ from those used for
design due to approximations in loads and supports.
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e After diagonal cracking, the steel tensile force at a crack is
governed by the moment at a section not passing vertically
above the crack intersection with the steel as indicated in Fig.
(5.9), where the tension force (T) at section (1-1) is governed
by the moment at section (2-2).

e It is necessary to develop the calculated stress in bars by
providing adequate embedment length before the strength of
the bar can be achieved.

Diagonal tension
crack 21 ll | ,
!\/L
o i |

0.3d

rd

7~

-~
-
=<\ Shifted bending

moment diagram

Part of beam at

diagonal tension crack

Diagonal tension

crack :___‘___
T f

Fig. 5.9 The idea of shifted moment diagram
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5.5.3 Egyptian Code’s Requirements for Curtailment

To take into account the considerations mentioned in section (5.5.2) of this text,

the Egyptian Code sets requirements for bar curtailment as follows:

1- At least one-third of the positive moment steel must be continued
uninterrupted along the same face of the beam by a distance of 150 mm

past the centerline of the support.

2- At least one-third of the total reinforcement for negative moment must be
extended beyond the extreme .position of the point of inflection (zero

moment) a distance (L,) not less than the greatest value of:
e d :
e 03d+ 109
e 0.3d+(L/20)
where
d is the effective depth of the beam,
@ is the bar diameter and
L is the clear span

3-. Every bar should be continued at least a distance (L,) equal to the
effective depth (d) or (0.3d+10 @) as shown in Fig. 5.10, whichever
is larger, beyond the point at which it is theoretlcally no longer
needed :

I | | |
—_ N\ 222 2422 L
: La .

l
I
l
N
1

1

" cut-off point N\ M, of 422

Fig. 5.10 Bar extension beyond the cut-off points (La)
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4- The full development length (Ly) plus the moment shift i.e., (Lg+0.3d)
must be provided beyond critical sections at which the maximum stress
exists. These critical sections are located at points where . adjacent
terminated reinforcement is no longer needed to resist bending moment.

5- No flexural bar shall be terminated in a tension zone unless one of the
following conditions is satisfied:

* The shear at the terminated point does not exceed two-thirds

that the shear strength of the cross section including shear
strength of shear reinforcement g,

* Stirrups in excess of those normally required are provided
over a distance equal along each terminated bar from the point

of cut-off to (0.75 d) as shown in Fig. (5.11). The area of the
additional stirrups is not less than;

) S ctteeieteerreeeraeeantaeseaeesseneeeaeeean 5.13
(add.) f, ( )

The. spacing between these stirrups shall not exceed (4/84) where g is

the ratio of the area of reinforcement cut-off to the total area of tension
reinforcement at the section.

S e (5.14)
88
Cuttoff S3d/8p
point | 5 |
T

l addittional stirrups d Jf

: =)

: L \\
N 0.75d .\ Shear stirrups
Tension / DR ’l .

zone

Fig. 5.11 Additional stirrups at cut-off points
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ECP 203 requirements for curtailment of bars are summarized in Fig. 5.12

| > Lgr03a |
| . | >
| >0.

ve C >0{7d or 10 & 7dorl0@ | g
As{ N\ - or L/20
| T ; ~/ /
T |

|
l [
- = = —
i >0.7dor | \_\As.t\&
> As;ve ) A/ | Wt——l > Lg+03d ll
L4 | L
0.3d f I )
._..1\ o
I
v '\ TBarsC o '
. '
! . : _\>Bars D
O.3d‘ ~ |
_ 0.3d, !
~N !
Bars A . {

[t
N0 : Bending moment
/\ : diagram

. \ .
Shifted bending Bars B ’

moment diagram

/
./.
/

—— o " — > ——— bt

©
9
=%

Moment of
resistance

L4 =Development length of bar
d = Beam’s effective depth
@ = Bar diameter

A, = Area of steel, (-)ve for top steel & (+) ve for bottom steel

Fig. 5.12 Egyptian Code requirements for bars curtgilment

202



5.6 Beams with Bent-up Bars

Bars may be cut-off where they are no longer needed for flexural strength or
may ‘be bent to participate in shear resistance and can be extended further to
prox{lde tensile top reinforcement as shown in Fig. (5.13). In some cases
particularly for relatively deep beams, it may be impossible to make use of bent:

up pars. The cost of labor involved in fabrication and erection of bent-up bars
limits their use. -

\Mr

Fig. 5.13 Beams with beht—up bars

5.7 Anchorage of Web Reinforcement

As mgntioned in Section 5.6, bars may be bent to participate in shear resistance
In this case, the bar must be extended beyond the point of maximum tensilé
stresses. dug to shear. This point may be taken at mid-depth of the beam as
- shown in Fig. 5.14-a. When stirrups are used as shear reinforcement, they must

be p.roperly anchored in the compression zone of the beam. To satisfy this
requirement, stirrups are provided with 90° or 150° hooks as shown in Fig.

5.14b.
Anchorage Anchorage
[ length X K length
a- Bent-up bars
10 -
=
L . ) ) b-Stirrups } .
Fig. 5.14 Anchorage length for shear reinforcement
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5.8 Splicing of Reinforcement

The need to splice reinforcing steel is a reality due to the limited lengths of steel
available. Typical diameter bars are readily available in lengths up 12.0 m.
Splicing may be accomplished by welding, utilizing mechanical connections, or,
most commonly for bars having diameter 32 mm and smaller, by lapping bars.
There are general requirements for proper splicing such as:

(i) Splices in reinforcement at points of maximum stress should be avoided.

(iiyWhen splices are used, they should be staggered.

5.8.1 Lap splices

In a tensile lapped splice, the force in one bar is transferred to the concrete,
which transfers it to the adjacent bar. Bars are lapped a sufficient distance
known as the lap length as shown in Fig. (5.15). The lap length shall not be less
than the development length. If, however; the ratio of area of steel provided to
the required area (A provided)/ As(required) ) is less than 2.0, lap length shall be

increased by 30%. If bars of different diameters are lapped, lap should be based
on the larger diameter. Lap splices for tension steel should be staggered such
that not more than 25% of total area of bars is lapped at one section.

In a compression lap splice, a portion of the force transfer is through bearing of
the end of the bar on the concrete. This allows compression lap splices to be
much shorter than tension lap splice. '

— _
| Co - T
. ! o—— i
N b b i '
I >3 ! >13L ! .
| t i
! . . - . [ -
! t ‘ ] |L :
i i .
i i .
Fig. 5.15 Lap splices
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The following conditions are also applied

a- Lap splices are not permitted in tension tie members. Splices in such
members shall be made with a full welded splice or a full mechanical
connection and splices in adjacent bars shall be staggered by at least 750
mm. The provisions of Section (4-2-5-4-3) of the ECP 203 shall be satisfied.

b- When splicing bars having different diameters, splice length shall be
computed based on the larger diameter.

c- Lap splices of bundled bars shall be baged on the lap splice length required
for individual bars within a bundle calculated in accordance to Section (4-2-
5-4-2-c) in the ECP 203, increased by 30%. It is not permitted to splice all
the bars in the bundle at a certain section.

d- Lap splices shall not be used for bars having diameter more than 28 mm. For
such diameters, welded splices or mechanical connections shall be used.

e- When splicing welded mesh in tension the splice length shall not be less
- than the following values:

1- For deformed bars, the lap splice length shall be equal to 1.3 L4 but not less
than 150 mm (Fig. 5.16a).

2- For smooth bars, the lap splice length shall be equal to 1.5 L but not less
than 200 mm (Fig. 5.16b).

E min 50 mm :
[ ] H
@ ° ®
_ max.of 1.3L 4
or 150 mm

-]
i

1

min50 mm

o . * .
C max. of 1.5L 4
or 200 mm

Fig. 5.16 Lap splices for welded mesh

205

5.8.2 Welded and Mechanical Connections

The code permits the use of welding according to the relevant Egyptian
specifications. However, welded connections are not allowed for dynamically
loaded structures. Welded bars should maintain their axes collinear. The welded
connection shall develop at least 125 percent of the specified yield strength of
the bar. This insures that an overloaded spliced bar would fail by ductile
yielding away from the splice location.

‘The following conditions must be also satisfied:

a- Welded splices or mechanical connections not meeting the requirements
of Section (4-2-5-4-3-b) of the ECP 203 may be used provided that the
distance between splices shall not be less than 600 mm and the splice
strength in tension or in compression is not less than the yield strength.

b- Only electrical welding is permitted in applying welding.

c- Welding is not permitted within a distance less than 100 mm from the
point at which the bar is hooked provided that internal radius of the hook
is not less than 12 times the bar diameter.

d- It is not permitted to splice cold-treated bars except after hot-treating the
weld zone.

e- It is not pernntted to splice bars by welding in structures subjected to
dynamxc loads.
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REINFORCED CONCRETE BEAMS

Photo 6.1 Skeleton reinforced concrete structure

6.1 Introduction

This chapter presents the analysis and design of reinforced concrete beams. It
‘starts with introducing the reader to the statical system of R/C beams. Types of
loads on beams and method of calculations of such loads are presented. Design
of R/C beams to withstand ultimate limit states of failure by flexure, shear, or
bond is illustrated. Reinforcement detailing is also presented. The chapter also
contains numerous illustrative examples.
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6.1 Statical Systems of R/C Beams

Depending on the conditions at the supports, R/C beams may be classified as:

a- Simple beams, which can be monolithically cast with columns or
supported on masonry walls (Figs. 6.1a and 6.1b).

Masonry R/C i
77 : wall  _FA4 : column |

L L

(@ (b)
b- Simple beams with cantilevers (Figs. 6.1c and 6.1d).

(c) @

c- Continuous beams, which can be monolithically cast with columns
(Figs. 6.1¢ and 6.1f) or supported on masonry walls (Fig. 6.1g).
(e) -

o

=

} 2 i Ly

g YA 2 masonry ‘
Ly g wall L, A Ly RN

®

Fig. 6.1 Statical systems of reinforced concrete beams

MmN

6.2 The effective span

The span used in the analysis of a reinforced concrete beam is referred to as the
effective span, Leg . The value of the effective span may be taken as follows:

- For simply supported beams, (refer to Fig. 6.2), the effective span equals to the

least value of:

e The distance between the center-lines of the supports (L)
o 1.05 times the clear span(L) between the supports .
e The clear span between the supports plus the depth of the beam (L.+d)

For cantilevers, the effective length equals to the lesser value of:

e The length of the cantilever measured from the center of support

o The clear projection of the cantilever plus its largest depth

For continuous beams monolithically cast with supports, the effective span may
be taken equal to the lesser value of:

o The distance between the center-lines of the supports
o 1.05 times the clear span between the supports

For continuous beams supported on masonry walls; the effective span may be
taken equal to the lesser value of:

e The distance between the center-lines of the supports
e The clear span between the supports plus the depth of the beam

Fig. 6.2 Calculation of the effective depth
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6.3 Loads Acting on Beams
A reinforced concrete beam carries the following loads:

¢ The own weight of the beam.
® The loads transmitted to the beam from the slab.
The wall loads.

* Any other loads that can be directly transmitted to them.

6.3.1 Own weight of beams

The own weight of a beam is usually calculated per unit meter of its length as
shown in Fig. 6.3. .

Own weight of thebeam(o.w.) = Veb b (6.1)
where ’ .
b = beam width
t = beam thickness :
Y= density of reinforced concrete (for normal weight concrete =25 kN/m® )

1.0m \) |

Fig. 6.3a Calculation of the own weight of rectangular beams

For slab-beam systems in which the slabs are cast monolithically with the
beams, the own weight of the beam is calculated as follows '

ow.=y_ xbx(t ~1,)

where _
t; = slab thickness

Fig. 6.3b Calculation of the own weight of T- beams
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6.3.2 Slab loads

The slab load (kN/m?) consists of a dead load g.and a live load p,. The dead

load on the slab consists of its own weight and the weight of the flooring above.
Dead load of the slab g; is calculated from:

g, =t X Y.+ FIOOFING oo, (6.3)
The floor covering (flooring) is usually taken from 1.5 to 2.5 kN/m’® depending

on the used materials.
The live loads p; on the slab depend on the usage of the structure as given in

~Chapter 1.

In cases where the slab is supported on all four sides and the ratio of length to
width is larger than 2 (Fig. 6.3), the short direction of the slab is stiffer than the
long one. In such a case, the slab carries the load in its short direction and acts as
a one-way slab. Accordingly, only the beams (AB and CD) of long spans
support the loads from the slab.

L

L, /2

(gsor %) X L1/2 kN/m

RENERRNNEERN
s pas

L

1 i
1 T

Fig. 6.3 Loads on beams supporting one-way slabs L/L>2
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In cases where the slab is supported on all four sides and the ratio of length to
width is smaller than or equal to 2 (Fig. 6.4), the load is carried by all the beams
surrounding the slab and the slab is called a two-way slab.

For two-way slabs supported on relatively similar beams on the four sides, the
lines defining the slab area associated to each beam bisect the comer between
the two edges and are inclined 45° to either edge. Such distribution means that
the loads on beams supporting t7o-way slabs are either triangular or trapezoidal.

L

950

=

Ws, g5 OF Ds Ws, g5 OF Ds

_, A
| span=L¢ |

. Fig. 6.4 Loads on beams supporting two-way slabs 1<L/L, <2

In case where the triangular or the trapezoidal load. satisfies the following
conditions:

o The triangular or the trapezoidal load has a symmetrical distribution
with the maximum intensity at the mid-span of the beam.

e The triangular or the trapezoidal load covers the span and vanishes at
the supports.

Then, the triangular or the trapezoidal load can be replaced by uniformly
distributed loads along the span of the beam, except for cantilever beams.
Referring to Fig. (6.5), the following definitions are recalled:
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E.quivalent uniform load for shear (g, or py): a uniform load that replaces the
triangular or trapezoidal loads and gives the same maximum shear.

where g, is the slab dead load given by Eq. 6.3 and p; is the live load.

E_quivalent uniform load for bending (g, or p;): a uniform load that replaces the
triangular or trapezoidal loads and gives the same maximum bending moment at
midspan.

g orp, g}++u++}g}
X :> loads for bending
~ 8x=Pgx  pa=pfpx
fo—ceenzhe I
pas pas
loads for shear
&s 07 Ps g,=a g.x py=ap.x
' Y v YV VY ¥
- loads for bending
=

8a=PB g x Pu=Bp.x
y vt v ¥ Y o¥VoV Oy

loads for shear

Fig. 6.5 The concept of equivalent uniform loads

213



In order to show the way in which this is done, consider the case of a beam
supporting a triangular load with maximum intensity w,at the middie as shown

in Fig. 6.4. The values of o and B for a triangular load can be easily derived.
Consider a slab load of an intensity w;, then:

The maximum shear force due to the triangular load at support = wl, /4

The maximum bending moment due to the triangular load at midspan = w L’ J12

" If the triangular load is replaced by a uniform load of intensity wg that gives the
same value of maximum shear, then:
w Ll Wy L|

S4 = —-2— or Wﬂ =0.5 Wy ﬂ =0.5

If the triangular load is replaced by a uniform load of intensity w, that giVes
the same value of maximum bending moment at mid-span, then:

£ = £ or w, = 0.667 w a = 0.667

Long direction _ L L S

where r = ==
Short direction L1 2x

The coefficients @ and ,B for are given in Table 6.1 for different values of L/2x.

Table 6.1 Coefficients of equivalent uniform loads on beams

r2x|10 |11 |12 |13 |14 |15 |16 |17 |18 |19 |20

o 0.667 | 0.725 { 0.769 | 0.803 | 0.830 ] 0.853 | 0.870 | 0.885 | 0.897 | 0.908 | 0.917

B 0.500 | 0.554 | 0.582 | 0.615 | 0.642 | 0.667 | 0.688 | 0.706 | 0.722 } 0.737 { 0.750

214

In case one of the conditions mentioned before is not met, as shown in Fig. 6.6,
one should not use the coefficients «and £. In such a case, the non-uniform

load could be approximated to an equivalent uniform load for calculating both
the shear and the bending moments. The intensity of this load w is given as:

w=w, (loaded areafloaded length) ..........c..ovorueene. (6.9)

Loaded area

Loaded Length

Equivalent uniform load Loaded area

Loaded Length

Loaded area ,
Equivalent uniform load w,

l Loaded Length

Fig. 6.6 Examples of cases where coefficients « and $ can not be used.
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6.3.3 Wall loads

Figure 6.7 shows an elevation of a skeletal concrete structure in which the
simple beam with cantilever (beam B) supports a masonry wall having a clear
height 4,, . For the wall panel bounded between two columns, only wall loads
bounded by 60° lines from columns cause bending moments and shearing forces
in the beam (Fig. 6.7.b). This is mainly due to arching action of the wall.

The trapezoidf':xl wal! load can be replaced by an equivalent uniform load giving
the same maximum internal forces. The coefficients o and Bdepend on the ratio
L,/2x, wherex=h,/\3 and.can be determined from Table 6.1. It should be

mentioned that for walls supported on cantilever beams no arching action occurs
and the total wall load is transmitted to the beam.

&w =¥, xt, +plastering weight ........................_. (6.10)
where
7w = specific weight of wall material ranges between (12-19) kN/m?
t, = thickness of the wall

plastering weight from two sides can be assumed (0.8-1.0) kN/m’

-*‘—.X_..'_ .}___L._'_
O O N N
C T T T 71
I’III‘IIIH— I
I .
A [T 71 l'l'x 1 0 60°
CT T T 7171 ] !
T 1T 71 7<
I 1 H I I
/ \
\. beam B
) (b) e
Lo
I I I — oy
AN

(a) (c)
Fig. 6.7 Wall loads Calculations
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For calculating wall load on beams we consider the arch action of the wall by
considering a triangular part of wall load to be carried by the column while the
remaining part of the wall load (trapezoidal part) is carried by the beam (refer to
Fig. 6.7b). Hence, when calculating loads on columns the triangular part of the
wall load must be added to columns loads.

wallload forbending(g ) =0 R, g, ceceeeerereacerrreannann. 6.11)

wallload for shear(g,. )= fh, g, corecrre. eerereeesraennanras (6.12)

Referring to Fig. 6.7, assume that the /,,=2.4 m and the clear distance between
the supports is 5.0 m and the own weight of the wall, g, equals 4.75 kN/m”.

For x=h, /3 = 2.4/3=139 m L,/2x=1.80 a=0897,3=0.722

Wall load for calculating bending moments for the part of the beam betwéen the
supports = ax g, xh, = 0.897x4.75x2.4 =10.23 kN/m

Wall load for calculating shearing forces for the part of the beam between the
supports = fx g, xh,= 0.722x4.75x 2.4 =8.23 kN/m

The weight of the part of the wall supported on the cantilever beam is totally

transmitted to the beam and is used for calculating the shear and the moments
=g, xh, =475x24=11.4 kKN/m

Note 1: Figure 6.8a shows a case in which the wall dimensions result in
triangular load on the beam. In such a case, the equivalent wall load is caiculated
as follows: ’

wall load for bending =2/3 (L, /2 tan60°) g,

wall load for shear =1/2 (L, /2 tan60°) g,

lak Ral



Note 2: In case of walls containing openings, the arch action is not fully
developed and the total value of the wall load should be transferred to the beam
(see Fig. 6.8b).

L,/2tan 60° -

o
80 60°

Lo

-
P

a. Short span walls b. Walls with openings

Fig. 6.8 Calculation of wall loads for some special cases

e

Photo 6.2 Typical Slab-beam structural system
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6.4 Slenderness limits for beams

The compression zone of a reinforced concrete beam is normally laterally
restraint against sideway buckling. This lateral restraint is maintained by floor
slabs attached to the compression zone ( see Fig. 6.9a).

Figure (6.9b) shows a case in which the compression zone of the beams is not
laterally supported against sideway buckling by the floor slabs. In such a case,
and in -other cases where the floor slabs does not exist; the code sets the
following limits on the clear distance between points of inflections in the lateral
direction: '

(@) For simply supported or continuous beams, the lesser of 40 b or 200 b%/d
(b)  For cantilever beams with lateral restraint only at support: 20 b or 80b*d
whichever is less:

[z

A § i

kA %ﬁ
b 11 [ | S|

Y
- zf Aninverted beam
1 2|
_.’_b_'<

Compression

Compression ——
zone

~H04-
Sec. 1-1 Sec. 2-2

_(a): Laterally supported beam (b): Laterally unsupported beam

Fig. 6.9 Lateral restraint against sideway buckling
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6.5 Linear Elastic Analysis of Continuous Beams

The ECP 203 adopts linear elastic analysis for the determination of bending
moments and shear forces in continuous beams. Critical load arrangement
normally requires that alternate spans are loaded and adjacent spans are
unloaded.

The ECP 203 permits the calculation of bending moments and shear forces
based on the assumption of rigid knife-edge supports. This assumption may lead
to very conservative values of the bending moments especially when the
columns are stiff and beam to column joints are monolithic. It should be
mentioned that for exterior columns moments induced by column restraint must
be taken into account. '

A further simplification is offered by the Code for continuous beams of nearly
equal spans and depths under uniformly distributed loads, provided that
variations in spans do not exceed 20% of the longest span, bending moments
and shear forces may be estimated as shown in Fig. 6.10. The bending moments
obtained using the coefficients of Fig. 6.10a should not be redistributed. For
cases of particularly heavy live loads, the coefficients of the figure may not be
applicable; an analysis of the continuous beams as being supported on knife-
edge supports would be required.

I- Moment = w x LYk,

2 3 24 Two spans

vas T AN T ral P

24 -10 -12 Three spans or more
Faw 12 FANES 16 rAy

Fig. 6.10a Moment coefficients (k,,) for continuous beams

II- Shear =k; x w x LL

04 0.6 0.6 0.4 Two spans
o A AN
045 0605 0.5 0.5 Three spans or more

Fig. 6.10b Shear coefficients (k;) for continuous beams
220

6.6 Reinforcement Detailing in R/C Beams

The effective depth, d, of a beam is defined as the distance from _the extreme
compression fiber to the centroid of the longitudinal tensile reinforcement

(see Fig. 6.11).

Fig. 6.11 Effective depth for a reinforced concrete beam

6.6.1 Concrete Cover

It is necessary to have a concrete cover (a) between the surface of the beam and
the reinforcing bars (refer to Fig. 6.12) for three reasons:

1. To bond the reinforcement to the concrete so that the two elements
act together. The efﬁciency of bond increases as the cover
increases.' A cover of at least one bar diameter is required for this
purpose in beams.

2. To protect the reinforcement against corrosion. In highly corrosive
environments such as beams constructed near ocean spray the cover
should be increased.

3. To protect the reinforcement from strength loss due to overheating
in the case of fire.

Table 6.2 summarizes the requirement ECP 203 regarding the value of the clear
cover
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. Table (6.2) Minimum concrete cover"* (mm)

Category of All element except walls | Walls and Solid slabs
structure - and slabs
Table (4.1) fuS25 S )25 [ S25 S )25
N/mm? N/mm? N/mm? N/mm?
One 25 20 .20 20
Two 30 35| 25 20
Three 35 30 30 25
Four 45 40 40 35

%% y
‘The concrete cover should not be less than the largest bar diameter

6.6.2 Bar Spacing

The arrangement of bars within a beam must allow:

1. Sufficient concrete on all sides of each bar

to tra i
ot o oone nsfer forces into or

2. Sufficient space so that the fresh concrete
compacted around the bars.

3. Sufficient space to allow a vibrator
the beam.

can be placed and
to reach through the bottom of

Referring to Fig. 6.12, the Egyptjan code requires that the distance b should be

b =Largerof { Largest used bar diameter L
l.5max aggregate size

Fig. 6.12 Spacing between individual bars
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6.6.3 Egyptian Code Recommendations

The ECP 203 requires when bars are placed in two more layers the bars in
the top layer must be directly over those in the other layers, to allow the
concrete and vibrators to pass through the layers.

If the drop of the beam below the slab exceeds 600 mm, longitudinal skin
reinforcements (shrinkage side bars) are to be provided along both side faces
of the beam. The area of this reinforcement should not be less than 8% of the
area of the main reinforcement; the spacing should not exceed 300 mm (see
Fig. 6.13).

Beam flange should be built integrally with or effectively connected to the
web to justify the design of the beam as having a flanged section. Also, top
reinforcement (normal to the beam axis) should be provided in the flange as a
condition of utilizing the monolithic action between flange and web. The area
of such reinforcement should not be less than 0.3% of flange’s cross section.
It should be extended to cover the total width of the effective flange. This
transverse reinforcement shall be space not farther apart than 200 mm.
Stirrups in the web should extend to the top of the flange to ensure

“monolithic action between the flange and web.

2
f"q' o3 ] >_shrinkage ‘
© % £ L J side bars > 8% As
. <’8§ I w—ﬁ
drop < 600 mm drop > 600 mm

Fig. 6.13 Provisions for shrinkage reinforcement
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Example 6.1

Figure (EX. 6.1) shows a plan and two sectional elevations of a reinforced concrete
structure. It is required to calculate the loads acting on the simple beam B1. Live Load
=20 kN/mZ, Flooring =1.5 KN/m? and own, weight of brick wall = 4.5 KN/m?. Assume
the thickness of the slabs = 150 mm.

Q‘P 5500 mm 530—0]-?)-mm ©
i .

Kz
|

4500

® |»

1A

Bl

2500

(a) Plan

N

$

At ANARNIIEERNEINAN G776 ORI £253

78 SANTIIRIRIRIRININ 5T SRSRRRNRNY REH

2800
2R NSRRI NN 2%

Sy e s

5 AR i

(c) Sec.B-B

Fig. EX. 6.1 Skeletal structure

MA

Solution
Step 1: Statical System of the Beam

Simply supported beam having a span of 7.0 m

o A

| 7.00m ]

Statical system of the beam

Step 2: Calculation of Loads
Step 2.1: Own weight of the beam

The width of the wall on axis (B) is 250 mm, accordingly the width of the beam
is taken as 250 mm. For simply supported beams, it is reasonable to assume the
thickness of the beam as (span/10). '

Thus the cross sectional dimensions of the beam = 250 mm x 700 mm
Own weight of the beam = width x (beam thickness — slab thickness) xy.
=0.25 % (0.70-0.15) x 25 =3.44 kKN/m

Step 2.2: Loads transmitted to the beam ‘through the slab

Dead load of slab, g, = Qwn weight of the slab + Flooring
' =0.15 x 25 + 1.50 = 5.25 kN/m’
Live load of slab, ps =2.0 KN/m?*

The slab load distribution is shown schematically on the plan. Slabs S; and S,
are classified as two-way slabs. Slab S; is a one way slab that transmits its load
to the long span beams located on axes 2 and 3. Slab S, is a cantilever slab that
transmits its load directly to the beams on axis (1).

The slab load is transmitted to beam B1 in two parts; the first part is transmittéd
directly and is composed of a trapezoidal load and a triangular load while the
second part is transmitted indirectly as a concentrated load through the beam on
axis (2).
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Load distribution of the slabs
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! 7.00 m ! 7.00m !

Direct slab load on beam B1

| The trapezoidal load has its maximum value at the mid-span and vanishes at the

" | supports. Thus, it can be replaced by uniform loads covering the whole span and

| giving the same maximum value of the internal force under consideration. The
| coefficients aand S are obtained as follows:

L=E—= 1.27 : a=0.793 and [3=0.605
2% 55
1| Equivalent uniform dead load for bending =5.25x0.793 x 2.75 = 1145
KN/m' »
Equivalent uniform dead load for shear =525x%x0.605%x2.75 =873 kN/m'

Equivalent uniform live load for bending  =2.00x0.793x2.75 =4.36 KN/m’
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Equivalent uniform live load for shear =2.00x0.605x2.75 =333 kN/m'

The slab triangular load does not have its maximum value at the middle of the
span and it does not vanish at the support. Hence, it will be considered with its
average value both for calculating the bending moments and shearing forces.

Equivalent uniform dead load for the loaded part of the beam = g; x loadedarea
loadedlength
_ 5.25x(0.5%x4.5x2.25)

4.5

=59 kN/m

Equivalent uniform live load for the loaded part of the beam = ps x loadedarea

loaded length
_ 2.00x(0.5x4.5x2.25) _ 295 KN/m
4.5 .
Step 2.3: Wall Load
Q)
A ,47},
1 7.00 m |

Direct wall load on the beam

From the figure the height of wall =2.80m

In order to simplify the analysis, the trapezoidal wall load is transformed into
equivalent uniform loads for calculating the maximum bending moment and the
maximum shear force.

L L 7.00

= - =216 ) 2.0.
2x  2(h,tan30) 2 x 2.8xtan30°

Since L/2x > 2, the equivalent uniform wall Load for calculating the bending
moment or the shear force of the beam

8 =8 = &uxh, =45x2.80=12.6kN/m
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Step 2.4: Calculation of the concentrated load

In addition to the previously calculated equivalent uniform loads, beam Bl
supports the reaction of the secondary beam on axis (2).

The beam on axis (2) supports loads from the slab and its own weight. Assume
that the dimensions of the beam are 120 mm x 700 mm.

Own weight of the beam = width x (beam thickness — slab thickness) x y.
=0.12 x (0.7-0.15) x 25 = 1.65 kN/m

The slab load is transmitted to the beam on axis (2) directly and is composed of
a rectangular uniform load and a trapezoidal load. Since we are interested in the
maximum reaction of the beam on axis (2), only loads for shear are calculated.

L 35 1.22 £=0.589
2x 4.5
g .
vy R %
o~
a + i
I ST AN s
s 550 m | 550 m ]
I

Slab load on the secondary beam on axis 2

1t is clear from sec. B-B that no wall is present on the beam. Thus, wall load=0
Slabdeadload = g, x X, + g, x X, x f=5.25x1.25+5.25x 225 0.589 = 13.52 kN/m
Slabliveload = p, x X, + p, x X, x $=2.0 x1.25+2.0x2.25x0.589 = 5.15 kN/m
Total equivalent uniform dead load gy, = ow.+ Slab load =1.65 + 13.52 = 15.17 KN/m

Total equivalent uniform live load pg, =slabload=5.15 N/m

Reaction due to dead load (G)= g”'—ZXL =15:17x3.3,

=41.7 kN

Reaction due to live load (P)=

pshle. _515%55 10 i

77K

Summary
Equivalent dead load for bending
Part ab

g, =ow+slabload forbending + wallload for bending
g, =344+1145+12.6= 2;/.5kN/m

Partbe

g, =3.44+(1145+5.9)+12.6 =33.4kN/m

The concentrated load is the reaction due to dead load as calculated from the
analysis of the beam located on axis (2)

41.7kN

27.5 kN/m 33.4 kN/m
b3
a C
y b
L 250 m [ 450 m

Equivalent dead load for shear
Part ab

8., =ow +slab load for shear +wall load for shear
8, =344+873+12.6=24.8kN /m

Part be

g5 =3444+(8.73+59)+12.6=30.7kN /m

The concentrated load is the reaction due to dead load as calculated from the
analysis of the beam located on axis (2) '

4170 kN
24.8 kN/m 30.7 kN/m
NN
a c
b
| 250m 4.50m
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Equivalent live load for bending
Part ab

p, =slab live load for bending
p, =436kN /m

Part bc
P, =436+225=6.6kN /m

The concentrated load is the reaction due to live load as calculated from the
analysis of the beam located on axis (2)

14.2 kN
4.36 KN/m | 6.6 kN/m
NN | ]
AN b
1 2.50m ! 450 m

Equivalent live load for shear
Part ab

Py =slab live load for shear
Py, =3.33kN I'm

Part be
Py =3.3342.25=5.6kN /'m

The concentrated load is the reaction due to live load as calculated from the
analysis of the beam located on axis (2)

142 kN
I 5.6 kN/m

2.50m J 450m
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Example 6.2

Figure EX. 6.2a shows an architectural plan of a typical story of an office
building. It is required to:

a- Propose the structural system of the floor as a slab-beam type system.

b- Draw the load distribution from the slabs to the surrounding beams.

Solution

The structural engineer works very closely with the architect when proposing the
structural system of the floor in order to meet the architectural requirements.
Generally, one provides beams at the locations of the masonry walls. The width of the
beam is usually equal to that of the wall. Beams are also provided in order to get
reasonable slab dimensions.

According to the previously mentioned points, the structural plan of the floor is shown
in Fig. EX. 6.2b. The following points can be observed:

1- There are two terraces in the floor plan. They are both cantilever slabs since
the span of the cantilever is relatively small (1.2m). For spans of about 2.0m,
cantilever slabs can be economically utilized. For longer spans, deflection
considerations limited the use of cantilever slabs.

2-In the corridor area, no walls exist on axes 3, 4 and 5. Hence, we can either
provide beams between the columns on axes C and D or leave the corridor area
beam free. If it is architecturally accepted, then providing beams improves the
framing action of the building.

3- The slabs of the structural plan of Fig. EX. 6.2b have relatively reasonable
dimensions. No need to provide beams to reduce the area of such slabs. For
example, the floor slab of the meeting room has dimensions of 4.0m x 7.6m.
The area of $uch a slab could be divided into two parts if one provides a beam
on axis E, between axes 5 and 6. However, such a beam is not architecturally
acceptable. Accordingly, the structural engineer should provide the required
thickness and steel reinforcement of such slab of dimensions 4.0m x 7.6m in
order to preserve the architectural requirements. The same observation applies
to the floor slab of room (5), where a beam could have been provided on axis 7
between the columns located on axes A and C.

4- Most of the floor beams are supported directly on columns. In some cases,
however, beams can be supported on other beams. For example, the beam
located on axis 8 is supported on cantilevers extended from the beams located
on axes A and C.

The load distribution from the slabs to the surrounding beams is shown in Fig. EX.
6.2c.
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Fig. EX. 6.2a Architectural plan for a typical floor of an office building
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Fig. EX. 6.2¢ Load distribution from the slab to the surrounding beams
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Example 6.3

It is required to calculate the loads acting on the simple beam with cantilever B2
shown in Fig. (EX. 6.2b).

Data

Live Load = 2.0 KN/m’

Flooring = 1.5 kN/m®

Floor Height = 3.50 m.

Specific weight of the brick wall is 14.8 kKN/m’

Solution
Step 1: Statical System of the Beam:

Simple beam with a cantilever

® . |
;

¥ AN

l 530m | 120 |

Statical System

Step 2: Calculation of Loads

Step 2.1: Own weight of the beam
Assume that slab thickness is equal to 150 mm.
Assume that the thickness of the beam in the range of (span/10) (¢ = 600 mm )

Thus the cross sectional dimensions of the beam = 250 mm x 600 mm
Own weight of beam = width x (thickness of beam—thickness of slab) x 7,

=0.25x(0.60-0.15) x 25 =2.81 kN/m

Step 2.2 Loads transmitted to the beam through the slab

Own weight of slab = thickness of slabx y,=0.15x25 =3.75 KN/m®

Dead Load, g, = Own weight of slab + Flooring = 3.75 + 1.50 = 5.25 kN/in*
Live Load p; = 2.0 kKN/m?
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The slab load is transmitted to beam B2 in two parts; the first part is transmitted
directly and is composed of a trapezoidal load and the second part is transmitted
indirectly as a concentrated load through the secondary beam B1.

1.30
1
g
= s
9
La!
N
(AR A B
/ 39 1 1.4 ’
530m 1.20

Direct slab load transmitted to B2

The slab trapezoidal load does not have its maximum value at the middle of the
span and it does not vanish at the support. Hence, the loads will be calculated
using the area-method for calculating the bending moments and shearing forces.

Average uniform load = (g. 0r p,) x loadedarca

loadedspan
1. Between supports

loaded area = 2.6x26

+2.6x1.3+(g§¥)x1.4 =9.42m?

xloaded area  5.25 x (9.42)

Thus, the uniform dead load = & = =9.33 kN/m’
loaded span 5.30
and the uniform live load = p, xloaded area = 20x (9'42) =3.55 kN/m’
loaded span 5.30
2. Cantilever part
2
loaded area = % =0.72m?
Thus, the uniform dead load = 8:*/0adedarea _ 325 x (0.72) _3 15 1ovm
. loaded span 1.2
and the uniform live load = p, xloaded area _ 20x (0.72) - 1.2 KN/m'

loaded span 12

Step 2.3: Wall Load

( ]
g
Oo\ 600
[
Yy v¥YVv)y \ A y Y
VAN :
lr_ 5.30 m ! 1.20_JI

Wall load transmitted to B2

g, =¥, xt, + plastering weight =14.8x0.25+0.8 = 4.5kN Im?

Height of the wall = floor height — beam thickness =3.5-0.60=2.90m

X = === =1.6Tm
tan 60 3 3

—£—= >3 =1.58

2x 2x1.67

o=0.867 and p=0.684

1. Between supports
e Equivalent uniform wall load for bending (gwb)
g, =axg,xh, £0.867x4.5x2.9 =113 1N/ m’
o Equivalent uniform wall load for shear (8ws)

2. =Pxg,xh,=0684x45x29 =8.93kN/m'

2. Cantilever part

e Since the wall load is rectangular, the equivalent uniform wall-load
for bending equals the load for shear.

gy = 8o = QX b, =45%2.9=13.05kN/m’




Step 2.4: Calculation of the Concentrated Load (Beam B1)

In addition to the previously calculated average uniform loads, beam B?
supports the reaction of the secondary beam on axis &) B1).
Beam B1 supports loads from the s
calculating its reaction, it should
load is composed of a uniform rec

labs, the walls, and its own weight. When
be analyzed for the load for shear. The slab
tangular load and a triangular load.

O .
il
«~ + 5
' 5.20m 520m ]
Direct slab loads on B1
<
N
I
5.20m
Direct wall load on B1
Self weight

Assume the concrete dimension of B1 as 250 mm x 600 mm

Own weight of the beam = width x (beam thickness — slab thickness) x 7,
=0.25x(0.60.15)x 25 =2.81 KN/m

Slab load

Slab dead load for shear = load from triangular part + load from one way slab
=f-g x+g, x,
=0.5x525x2.6+5.25x% 1.2 = 13.125 kN/m’

Slab live load for shear = B-p,-x +p, - x,
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= 05x20x2.6+20x12 = 5.0 kKN/m'
Wall load
Height of the wall = Floor height — Beam thickness= 3.5 — 0.60 = 2.90 m
h 2.9 _L_= 52 —1.55
SETHom 2x  2x167 .

- 0=0.862 and B=0.678

) 2
g, =7, xt, + plastering weight =14.8x0.25+0.8 =4.5kN /m

Equivalent uniform wall load for calculating the shear (g,s)

8. =Pxg,*xh,=0.678x45x2.9=885kN/m'

Total load

Total equivalent uniform dead load for shear (gg,) =
g4 =ow+slabload for shear+ wallload for shear

g =2.81+13.125+8.85=24.79kN/m

Total equivalent uniform live load for shear (p,,)= 5.0 kN/m’

Reactions ‘
xL 2479x52
Reaction due to dead load (G)= gﬁ’li——— =i = 64.4kN
. PaxL _5.0x52 _
Reaction due to live load (P)= ——"2— == 13.0kN

Step 3: Total loads acting on the beam B2
Step 3.1: Equi\mlenf dead load for bending

between supports

g, =ow+slabload +wallload for bending

g, =2.81+9.33+11.31=2346kN /m’

cantilever part

g, =2.81+3.15+13.05=19.0kN/m 44 kN

19.0 kN/m'
23.46 kN/m'

ENENNNNEEEE
A A

‘ ’ 5.30m ! 1.20 [
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Step 3.2: Equivalent dead load for shear
between supports |

8w = 0w+ slab load + wall load for shear

84 =2.81+9.33+893=21.07kN/m'

cantilever part
8o =2.81+3.15+13.05=19.014N /m’

21.07 kN/m'

64.4 kN
19.01 kN/m*

Pl

T
74%

5.30m

shear equals equivalent live load for bending

hetween supports
p, =slab live load

P, =3.55kN /m'

cantilever part
P, =L2kN I'm’

3.55 kN/m'

Step 3.3: Equivalent live load for shear and bending

Since the slab load is calculated using the area method, equivalent live load for

13.0 kN
1.2 kN/m'

A . 2

vy

é%

_530m

! 1.20 ‘

g
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Example 6.4

It is required to find the loads acting on the beam B3 shown in Fig. (EX. 6.2b).
Live Load = 2.0 kKN/m’, Flooring = 1.5 kN/m?, Floor Height = 3.50 m.
Specific weight of the brick wall is 14.8 kN/m’.

Solution

Step 1: Statical System of the Beam:
Continuous beam with four equal spans

==

4.00 m | 4.00 m | 4.00m i 4.00m

Statical system

Step 2: Calculation of Loads
Step 2.1: Own weight of the beam

Assume the cross sectional dimensions of the beam =0.12 mx 0.60 m

Assume that average slab thickness is120 mm.

Own weight of beam = width x (thickness of beam—thickness of slab) x y.
' =0.12 x (0.60-0.12) x 25 = 1.44 kN/m

Step 2.2: Load transmitted to the beam through the slab

Own weight of slab =1 xy,
=0.12 x 25 = 3.00 KN/m’

Dead Load, g = Own weight of slab + Flooring
=3.00+1.50 =4.50 kKN/m’

The continuous beam supports two-way slabs from one side and one-way slabs
from the other side. The two-way slabs transmit triangular loads to the beam,
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while the one-way slabs transmit uniform loads. In order to simplify the beam
analysis, the triangular loads are transformed into equivalent uniform loads.

o
+
1
AN A
_400m ] 400m____| 400m | 4.00 m
Slab Loads

Equivalent uniform slab dead load for bending

&» = triangular load from two way slab + load from one way slab
SQ-g X g X,

=0.67x4.50x (4.0/2) + 4.50x2/2 =10.53. kN/m’

Equivalent uniform slab dead load for the shear
&n =f-g x+g -x

=0.5x4.50x(4.0/2) + 450 x 22 =9.0 KN/m'’
Equivalent uniform slab live load for bending
pb =a'ps'xl+ps.x2 . )
=0.67x2.0x (4.0/2) + 2.0x2/2 =4.68 KN’
Equivalent uniform slab live load for the shear
Dsh =8-p,-x +p,-x,
=05x2.0x(4.0/2) + 2.0 x 212 =40 kN/m’

242

Step 2.3: Wall Load

8. =7, X1, + plastering weight =14.8x0.12 + 0.8 = 2.58 kN / m?
Height of the wall = Floor héight — Beam thickness= 3.5 - 0.60 =2.90 m

X=—==—x=1.6Tm
N

L: 4.0 =1.19

2x 2x1.67

0=0.766 and p=0.581

Equivalent uniform wall load for bending (gus)
. =axg, xh, =0.766x2.58x2.9 = 5.73kN /m'

Equivalent uniform wall load for shear (gy;)

8. =Bxg, xh, =0.581x2.58x2.9 = 4.34kN / m’

:L /‘?/
T

="

4.00m | 4.00m , 4.00m | 400m |

Wall load
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Step 3: Total loads acting on Beam
Step 3.1: Equivalent Dead Load for bending

g, =ow+slabload + wallload for bending

g, =1.44+10.534+5.73=17.7kN/m'

_ 2=17.7 kiN/m
SRR RN RN RN RN
o . > A ras A
| 400m | 400m ___| 400m___| 400m |
Step 3.2: Equivalent Dead Load for Shear
g4 = ow+slab load + wall load for shear =
2,4 =1.44+9.0+4.34=14.78kN /m’
' g=14.78 KN/’

O T T i rrrr o
A TN s A A
! 400m | 400m | 400m___| 400m |
Step 3.3: Equivalent Live Load for bending

ps=slab load =4.68 kN/m’

P5=4.68 KN/m'
IR RN
A P A A A
L 400m | 400m | 400m | 400m |

Step 3.4: Equivalent Live Load for shear
Psn= slab load=4.0 KN/m
psh=4.0kN/m’

IR RN RN
A A AN AN A
! 400m | 400m | 400m | 4.00m |
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Example 6.5

It is required to carry out an integrated design for the simple beam shown in Fig.
EX. 6.5a. The beam is arranged every 5.0 m. The beam carries a uniformly
distributed unfactored dead load (including its own weight) of a value of 20
kN/m and unfactored live load of a value of 15 kN/m. This uniform unfactored
load could be considered for the bending and shear designs. The characteristics
compressive strength of concrete f,, = 30 N/mm”. The yield strength of the
longitudinal steel £, = 360 N/mm” and for the stirrups = 240 N/mm”.

w kKN/m’
EENENEEEEEEEEEEEE
s | “'jo.u
| 1040 6.60 m
e

Fig. Ex-6.5a Simple beam

Solution A
Step 1: Flexural design
Step 1.1: Calculation of maximum moments

Factored design load, w, = 14DL.+1.6LL.
=14x20+1.6x 15=52kN/m
For obtaining the maximum moments, one needs to calculate the effective span.
Assume a concrete cover to the C.L. of the steel of 50 mm
d =700 - 50 = 650 mm

Lesr = The smallest of:
e distance C.L. to C.L. between the support = 7000 mm
o clear span +d = 6600 +650 =7250 mm
e  1.05 x clear span =1.05x6600 =6930 mm
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The bending moment diagram is shown in the figure below

104 kN.m i

o ' ]

312 kN.m
Bending moment diagram -

Maximum positive bending moment at mid-span

2
M = 52.0x923

_umax(+ve)

=312 kN.m

Maximum negative moment at the support (due to partial prevention of beam rotation)

6.93°

M =52.0x%
24

=104 kN.m

u max (-ve)

| Step 1.2: Design of Critical Sections

The critical sections are shown below

&6

Section at midspan (Sec 1):- T-section
By = The smallest of:
e 16t, +b=16x120+250=2170mm

. %+b %%()0-+250=1650mm

o CL. to C.L. between the beams on plan = 5000 mm
Beg= 1650 mm

‘Choose A=5® 22

Assume that the neutral axis is inside the flange (a < t;)

M,
feuB

6
650:C,JM C, =819
30x1650 _

The point is outside the C,-J curve .. % < (%)min

d=G

Take%:(-;)mi,,=o.1zs C=0.125x650=81mm  and J=0826

a=0.80x81=65mm < t; (as assumed)
4 = Mu
fy-id

_ 312x10°
° 360x0.826x650

= 1614 mm*

(45 ) min = the smaller of:

0.225.f.. bd = 0.225+/30
, 360

¥

x250% 650 = 556 mm?

1.3 A(required) =1.3x1614=2098mm’
‘but not less than

0.15 _0.15

xbxd x 250 x 650 = 244 mm>
100 " 0

(As)min. =355 6 mm2 < (As)required
Asehosen) =1900 mm’

A
M, =M, x—=E=n 312x 2% _ 3674nm
1614

s{required )

Stirrup hangers: The minimum required area of steel used as stirrup hanger is
10 % of the main steel (Use 2¢12). :
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Section at support(Sec 2):- Rectangular-section
b=250 mm

M
d=c1 “ | |
Su b [ !
[104x10° - % T
650 = C, | —— C =552
30x 250 4

The point is outside the C;-J curve . £ < (£) .
. d d min
c c
Take "7 = (E)min =0.125

C=0.125%650 =81mm J=0.826"
M, - 104x10°

u

= = = 2
7,74 360x0826x650 >0 ™™

5

(4, )in =556 mm* > A;(,-e,,) <0 US€ Agpin

Choose A=3D16=600.0 mm>

A .
M, =M xS 104x% =116.0 kN.m

s(required)

Step 1.3: Calculation of the development Length

/5
mﬁn(-yl)
Ly={———15y
4fbu } ¢
, 5 30
Sou =030 %- =0.30 \/; = 134 N/mm*
nboltom=1 .0 Niop™ 1.3

For bars in tension:- .
o=1.0 (Straight Bars)  and B=0.75 (deformed bars)

1-0x0.75x1.0x(360/1.15)

Lfl(boltom) =1 4x134

14 = 449 (962 mm) for @ 22

1.0x0.75x1.3x (360/1.15)

1 5
¢ 4x1.34

d(top)

Y9 =579 (912 mm) for @ 16

For bars in compression:-

o=1.0 (Straight Bars) and P=0.50 (deformed bars)

by = {1.9x0.50>; Lcl)z ‘(‘360/1.15)}‘ o294 (642 s for © 22
Ly = (L2XOZVE2XCRILI, 4 - 38 (456 mm) for ® 12
X}k,

Or we can direcfly use the coefficients from Table (5.3) with f, = 30 N/mm’
For Tension: Lawottom=30D, Liopy=65®
For Compression: Lagpottomy=40®, Laopy=32® °

Step 2: Shear Design

The shear force diagram is shown in the figure below

180.2 kN

Le=6.93m

180.2 kN

Shear force diagram

For the case of uniform load, the critical section is at d/2 from the face of support.
Q.= Reaction at thesupport (R) -w  (d /2 + half columnwidth)

R =52x—6—'29—3 =180.2kN

0, =180.2—52x(%5-+0.20)=152,88 KN

0. _15288x10°

q, = = =0.94 N /mm2
bxd  250x650

Ao




Gt = 0-7 f‘“ =0.71’£=3.13 N /imm® <40N /mm’®
. 1.5

| Gy =313N /mm?

4. < G - Concrete dimensions of the section are adequate for shear.

g, =024 Jau
Ve

9e =o.z_4,’%’% =1.07 N/mm®

Ty <qcu Use minimum stirrups
According to the ECP 203, 4. = %ﬁ=—££—= 0.00167 (not less than 0.0015)

Ast(min.) = Kumin bs

| Take s=200 mm

Agminy = 0.00167x250x 200 = 84.0 mm* (for two branches)

‘Area of one branch = 42 mm® ——Use Stirrups 5¢8/m

Curtailment check for bottom straight bars
At the cut-off locations, ECP 203 requires that the spacing between the stirrups

A (cut) 2022
hould b ter than d/88 wh e Y |
(s)s ould be greater than d /88 w ere B 7 o)~ 5022
650
0.8.x0.4
Additional stirrups is added (¢8 @200 mm) in a distance of 0.75 d. Thus the
final spacing is decreased to 100 mm for the distance of 0.75 d.

S< =203 mm

Step 3: Reinforcement detailing

Figure EX. 6.5b shows the curtailment of bars and the moment of resistance
| diagram as well as the original bending moment diagram for the case of straight
longitudinal bars. The rules mentioned in Chapter 5 were followed for bar
il curtailment.

Complete reinforcement detailing for the beam is shown in Figs EX. 6.5¢ and
'EX. 6.5d for the case of straight and bent bars, respectively.

i
' >L,+03d ‘ |
| d O |
»0.7dor | $8@100mm  2¢12 @ 8@200mm i
3¢t6 . Fquor 1/20 |
i \ - 1 * .
' X 7 i
f 7 AN 1
' |
f .
i |
1 !
N ]
t AY B
I
3gh22 / ! \ 5422 :
>0.7d or l I
[ T Y 109 | .
l | =L ut 0.3d |.
I 1 H
i »L +0.3d 1 l
17 d | ‘
1 1 !
| { i
1 . 1 !
t Moment of resistance | {
~"of 3¢16 } :
0.3d i !
_+ 1 l
— - { .
~ i N
M~ |
0.3d It 1 B.M.D. I
S~ i I
i = :
: = | i
' : == — |
_Moment of resstance | —————
of 3gp22 Shifted B.M.D. / =3
Moment of resistance
of 5¢b 22
316 .
N\ 2¢412
Ve
N » ‘ ’ 2¢p22
\ 3¢p22°

Fig. EX. 6.5b Curtailment of bars for beam Bl
(Case of straight bars)

251




wilig0 | &8 @ wwoeezd@s e cl#e

2-2 088 i-1 088 (sreq dn-juaq jo as80)
052 1T ose” [ ureaq Joj S[rejep JUSWANIOJUISY PS'9 "XH "SLl
2z e > e #s ] .
~ : S
002@8 @ 8 002®8 @ 8
3 3
{ m w
IE IE
i zZege N 2Pz N
/ ZZBE >
44 X4
o
W)
o~
\ S
zi#2
ﬁ. , P
] T B
! 22 BG\ i/ ez BE
i \— \
71 > z X N
_ i
_ !
_ i
\ i
i - ;
_ [
[ L i
i wwopz@s @ Zi%e i
i
i ._J 2 o+ !
27 '08g |-} 088 (sTeq JySrens Jo aswo)
05s jﬂ 14 Emoo, 0] S[IBIOP JUSWADIOFUINY 96°9 "XH 'St
2z e v 22 PS
S 3
001@8 & 8 002@8 @ 8
3 3
3 |
L s IE
gidbe cighe
e Z2PE ~
’ 2 #e N ~
)
oy
\ /
. , 2Lz .
sIL#e olge
— = — o
_ T AR I N
. 42713
i BT\ \\.
VA NS
| |
| |
— - L NP -
: —
[ 9L#E / 9I#¢E |
i : Wiigo @8 @ :
[

Lo




Example 6.6

It is required to carry out an integrated design for the simple beam with
cantilever shown in Fig. (EX. 6.6a). The beam is arranged every 5.0 m. The
unfactored dead and live loads acting on the beam are also given. The cube

f, = 360 N/mm”.

a) Simple beam with cantilever

34 kN 20 kN
20 kN/m

lllllllulllllllllll'r
o

- §>._

1

3.0m l _30m ; 20m |

b) Unfactored dead loads

14 kN 8 kN

10kN/m
&lllllﬂllllllllllll
AN

- §>._

3.0m l 3.0m ! 20m |

¢) Unfactored live loads

Fig. EX. 6.6a Simple beam with cantilever

Solution

Step 1: Flexural desngn

Step 1.1: Calculation of maximum moments

Maximum +ve moment at mid-span

Since the live loads is less than 0.75 D.L., the ultimate factor of 1.5 may be
- used. For obtaining the maximum moment at mid-span, the full live load is

compressive strength of concrete f,, = 30 N/mm’ and the yield strength of steel |

applied between the support, while only 0.9 D.L. (minimum dead load required
by the code) without live loads are applied at the cantilever part.

The calculations of the loads are carried as follows:

Between the supports: Cantilever loads:
w, =1.5x(D.L.+ L.L) w, =090xD.L.

w, =1.5%(20.0+10.0) = 45.0 kN /m
P, =1.5%(34.0+14.0) = 72.0 kN

w, =0.90x20.0 =18.0 kN /m
P, =0.90x20.0 =18.0 kN

72 kN . 18 kN
45 kN/m 18 kN/m
apt b bV Ty
AN » - b
!, 3.0m ! 3.0m ! 2.0m !
Load case 1
Mg = W);Lz +f:—L—M,,(%, =(45—;‘6-i 72"6)~13_274 SkN.m

Maximum -ve moment at the cantilever

For obtaining the maximum negative moment at the cantilever

Between the supports:
w,=090xD.L

1 w,=090x200=18.0 AN /m

Cantilever loads:
w, =1.5%(D.L.+LL)
w, =1.5%(20.0 +10.0) = 45.0kN / m

254

P =0.90x34.0=30.6 AN P, =1.5%(20.0+8.0) =42.0 kN

30.6 kN 42 kN
18KNmM' - | 45 kN/m'
LlllllllvlllllllIHIIV‘
! 3.0m l - 3.0m l 2.0 l
Load caseZ_
255




45x2*

Mu(-ve)@cantilever = 42x 2+ =174.0kN m

2
30.6x6  18x6° 174 .0 0,n m
4 8 2

Mu(+ve)@mid span=

Step 1.2: Design of critical sections

The critical sections are shown in the figure below

’4; 1 2
: ' o

{ 6.0m ! 2.0m _!

Section No. 1 T-section
M, =27450kN.m

B.r = The smallest of:
® 16t +b=16x120+250=2170mm

. %’-+b =9§$9+250=1210mm
e C.L. to C.L. between the beams on plan = 5000 mm

Note: The factor 0.8 is used because the span is continuous from one end.

Be= 1210 mm

Assume beam thickness(t) = SPA_ 700 mm
10-12

d =t ~cover =700~ 50 = 650 mm

Assume that the N.A. is inside the flange (a <t,)
M,

JeuB

650=.C. ,274.5x10°,
~ 'V 30x1210

The point is outside the curve .. -2—< (%)min

d=C

C; =747 & J=0.826

Take §= (:ci-)min =0.125

C=0.125x650=81.25mm

a=080x8125=65mm < t~=120 mm (as assumed)

~

M, _ 274.50x10°

= -2 =1420mm?
7,74 360x0.826x650 e
(A ) min = the smaller of: _
0.225
o xbxd = 0'2228/35 x250%650 =556mm?2.d -

>

1.3 A(required) =1.3x1420=1846 mm’

(As)min. =556 l'nn'l‘2 <
Choose A=6D18

(As)required :
Ag(choseny = 1527 mm?>

1523 = 294.6 kN.m

A
M =M x—esm . 274.5%

r u
s{required)

Section 2: Rectangular section
b= 250 mm

M,=174.0 kN.m

d=C, [+
Ju b

650=C ’174.0x106
'YW 30x250

€ =426 & J=0381
M, _ 174.00x10°

u

4,= = =918 mm?
7, jd 360x081x650

Choose 4®18 Agchoseny= 1016 mm’

M, =M, x—&sn) - 174'.0><19?1186 =192.6 kN .m

s (required )




Section No. 3: Rectangular section

| b=250 mm

At the simple support, the Code requires a design for the moment that develops due to
partlal prevention of the beam rotation. For a beam that carries a uniformly distributed
load kKN/m, the Code gives the moment at the simple support as wx 1*]24. This value

equals to half the fixed end moment. Extending this concept to our case, one could
assume that the moment that shall be developed is equal to half the value of the fixed
end moment developed for a beam that carries a uniformly distributed load plus a
concentrated load at mid-span.

Fixed end moment at simply supported span

_wxI? PxL 45x6> 72x6
= + = +

= =189kN.m
12 8 12 :
M atsection3= 0.5x189=94.50 kN.m
d=c, | M
S b
6
650 = c,,f%—s"—“’— € =579 &J=0.826
30x250 :
6
g =M _ 94.5x10° o0 o
f,Jd  360x0.826x650
(4)min = the smaller of:
0.22
——S——f—‘L xbxd = OZZSJ_ x250x650 = 556mm

¥

1.3 A((required) =1.3x489=635.7 mm’

Agmin=556 mm’
Choose A=3D16 (or 2018+2P12 in case of bent bars)

Step 1.3: Calculation of the development length

Sy
a.fa: ( )
Ly =t——234
4fbu
£, =030 ’fﬂ- =030 Jﬂ = 1.34 N/mm’
Ve 1.5 )
Nbottom™ 1.0 i topzl 3

For bars in tension:-
o=1.0 (Straight Bars) and (=0.75 (deformed bars)

1.0x0.75x1.0x(360/1.15)
4x1.34

Ld(bal{om) ={ 1@ =449
1 .0%x0.75x1.3x(360/1.15)

L
dop) = 4x134

1@ =57d

For bars in compression:-

o~=1.0 (Straight Bars) and [3=0.5‘0 {deformed bars)v

1.0x0.50x1.0x(360/1.15
Lzl(bat(om) { 4 1 32 )}q) 29¢
1.0x0.50x1.3x(360/1.15)
L{l(lop) =’{

} . =380
4x134 ,

.Or we can directly use the coefficients from Table (5.3) with f.,=30 N/mm2

For Tensidn: Ld(bottom)=5 O(D, Ld(mp)=65q)
For Compression: Lgpotomy=40®, Liop=52D ’

Step 2: Shear design 3

For calculating the design shear forces, the total dead and live loads have to be-
placed on the beam as shown in the figure below
w, =1.5%(20.0+10.0) = 45.0 kN-/m

P, =15x(34.0+14.0)=72.0 kN
P, =1.5x%(20.0+8.0)=42.0 kN

Maximum shear force is at d/2 from the left of the intermediate support.

la ¥ el
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_ 72x3+42x8+45x8x4
- 6

Q, =332-42-45x2 =200 kN

R, =332 kN

l72kN 45 kN/m i
TP NP LR idlily
,% 3.0m | 3.0m | ’ 2.0m |
| ‘Loadcase3 | |
142 Critical : 132
sectionl 42

i
!
1741~ 200

Shear force diagram

0, =0y - w,(d/2 + half thecolumn width)

0, =200.0-45.0x

(0'265 +0.25)=174kN

Q, _174.00x10°

4 =pxd ~ 250x650

S

<

=1.07N /mm?

.qu(max) = 07

9uq )-=0.71F£=3.I3 N Imm*<4.0N /mm?
12 (max) 1.5 ;

C— 3.13N /mm?®

4, < qumm the concrete dimensions of the section are adequate for shear.

q, =024 [~ =024, ’3’9 =1.07N /' mm?*
7. 1.5

Since g, =qcy, one has to use the minimum stirrups
0404
£y

‘| According to the ECP 203, u;, =—= YT 0.00167 (not less than 0.0015)

Ast(min.) = Hmin bs
take s=200 mm
Ayminy = 0.00167x 250 % 200 = 84.0 mm? (for two branches)

Area qf one branch = 42 mm?

Use 5 ¢ 8/m’

Curtailment Check for bottom straight bars

At the cut-off locations, ECP 203 requires that the spacing between the stirrups
(s) should be greater than 4/88 where g = ’féﬁ% =—2%% =0.33

§<= 630 =244
8x0.333

Additional stirrups is added (¢8 @200 mm) in a distance of 0.75 d. Thus the

final spacing is decreased to 100 mm for the distance of 0.75 d.

Step 3: Reinforcement detailing |

Fig. EX. 6.6b and EX. 6.6¢c shows the moment of resistance diagram as well as
the original bending moment diagram for the case of straight and bent-up
longitudinal bars receptively. The rules mentioned in chapter 5 were followed
for bar curtailment.

Complete reinforcement detailing for the beam is shown in Figs EX. 6.6d and
EX. 6.6¢ for the case of straight and bent bars, respectively.
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Example 6.7

It is required to demgn the continuous beam shown in Fig. EX.6.7a. The
characteristics compressive strength of concrete £, = 30 N/mm’ The yield
strength of the longitudinal steel f, = 360 N/mm’ and for the stirrups =
240N/mm’. The applied unfactored dead and live loads on all spans are 40 kN/m
and 15 kN/m, respectively. These loads can be used for designing the beam for
bending as well as for shear. Assume also that the spacmg between the beams on
plan is 4.0 m.

o o U S
5.00 m B 6.00 m | 6o0m

'D.L.=40 kN/m, L.L. = 15 kN/m '
HlHllHHHHHHHHHHHlHH

5.00 m 6.00 m 60m'

Fig. Ex 6.7a Continuous beam

Solution
Step 1: Flexural Design
Step 1.1 Calculation of maximum moments

w, =15(wy, +w;,)

w, =1.5(40+15) =82.5kN/m -

Since spans variations in the continuous beam do not exceed 20 %, the bending
| moment and shear forces may be estimated using the coefficients given by the

Egyptian Code. The critical sections for flexural design are shown in figure
below. : :

Note that the actual span was used to calculate the positive bending and the
'average length was used to calculate the negative bendmg over the suppoﬁ

] ] | l

4 1o i 4
% 5.00m 6.00m 6.0m
-24 -10 -12
as # +16 A

+12

2 2
Sec. 1 M, (+ve)=w, xL——82 5><5—-1719 kNm
12 12

. 2 2 .
Sec.2 M, (~ve)=w, XM.—: 82.5xw=249.7 kN.m
10 10
L’ 6
Sec.3 M, (+ve)=w, x—l——82 5x-l—g= 185.6 kN.m
2 2
Sec.4 M,(-ve)=w, xM: 82.5x 56‘0*162'—0)/2) =2475 kN.m

Step 1.2: Design of critical sections
span
10-12

d =1 —cover = 60050 = 550 mm

Assume beam thickness (t)A= =600 mm

Section No. 1 T-sec
Bes = the smallest of:
16t +b =16x120+250=2170mm

L, _0.8x5000

2+b +250 =1050mm
‘ CL. to C. L between the beams on plan= 4000 mm
Beg=1050 mm
d=c [
JeuB

550=C, ,‘fw C =744, & J=0.826
301050 | ~

The point is outside the C1-J curve .. Use% =-(§)min‘= 0.125
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C=0.125%x550=68.75mm

a=080x68.75=55mm < t~=120 mm
M 171.9x10°

u

A = =
*f,Jd 360x0.826x550
(4s)min = the smaller of:

0.225.ff., b 20225330
f, 360

1.3 A(required) =1.3x1051=1366mm?>
(Admin. =471 mm’ < (As)required

= 1051 mm*

x250x550=471mm*

Choose A=5D18 A =1272mm?

s (chosen)

Section 2 Rectangular Section
b=250 mm d =550 mm M,=249.56 kN.m

__%___

d=c,|Ls o
Jfu B _
6
550 = C,JM G =30 &J=0.74
30x250

_ M, 249.6x10°

i

¢ f,Jd  360x0.74x550

=1699.0 mm 2> AS minimum

Choose AF=3P18+3 D20 4,4, =1704mm?

l: Beff l:

Section 3 Section T-Section
M,~=185.63 kN.m

Ber = smallest of

162, +b=16x120+250 =2170mm
L 0.7 x 6000

Erb=— 4+ 250=1090mm
5 5

The factor 0.7 is used because the beam is continuous from both ends.

Bex=1090 mm

NLro

M,
JeuB

185.63x10°
350=C, \‘ 30%1090

The point is outside the C1-J curve . Use —2—: (g)min =0.125

d=G

~C =73 &J=0.826

C=0.125%x550=68.75mm

a=0.80x68.75=55mm < t~=120 mm

M 185.6x10°

4. = b= =1135.0 mm*

: f,Jd 360x 0.826x 550
Choose A;=3®20 + 218 — A, ., =1451mm>  (bent bars Fig EX6.7c)
Choose A=5018 = A, hoseny = 1272mm (straight bars Fig EX 6.7b)

Section No. 4 Rectangular Section

b=250 mm d =550 mm M,=247.50 kN.m

247.50x10° _
- /___ C =30 &J=0.74
530= Gy 30x250 !
6
M, __24750x10° _ oo

A = =
*f,Jd  360x0.74x550

Choose A=3®18 + 3020 = 1704 mm’

__J%,__




| Step 2: Check of shear

Shear ( 45 0.60 0.50 0.500.50
factors A Ay P

Maximum Shear force at 1" span = 0.60xw, x/,

= 0.60x82.50x5.0 = 247.5KN
Maximum Shear force at 2™ span = 0.50x w, %1,

= 0.50%82.50x6.0 =247.5KN

For the case of uniform load, the critical section is located at d/2 from the support
0, =247.5-82.5(0.55/2+0.25) = 2042 KN

_ Q. 2042x10°
= pxd ~ 250x550

ooy =07 F—m— =o.7,/ﬂ=3.13 N /mm* <4.0N [mm?
S\ 15

Gy = 313N /mm*

=1.49 N/mm?®

9. < Gumay the concrete dimensions of the section are adequate for shear.

q., =024 ’& =0.24, ’% =1.07 N/ mm?
. Ye .

9y > qeu web reinforcement is required

9 =4, —05¢,, =1.49-0.50x1.07 =0.955 N/ mm?

- f__gt__ = _Ysu
bs fylys
2x4, 0955

M= A&=05728

250xs  240/1.15
For¢=10mm Ag=78.5mm’ s=137 mm

Using ¢ 10 @ 125 mm :

Check for minimum stirrups -

Ay riny = Hin b5 =0.00167x250x125 = 52.0 mm*® < 78.50 mm’....ok. A
Step 3: Reinforcement detailing 4

Complete reinforcement detailing for the beam is shown in Figs. EX. 6.7.b and
EX. 6.7.c for the case of straight and bent bars, receptively.
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LC,/ 4

6.0m

CL

LG,/ 4

84510/m

LC,

14

8.0m

5¢10/m

2
eyt

LC,/4

LG,

2}

5.0m

3¢p18+3g20

2¢612

3¢18+3%20

2412

Ve

3418

29518+3¢20

518,

5¢518

090

E
& g e
5 3 &
N .
L__: g
. L o~
e o
7o
050
5 o
zl s
EN
o © 0
o
S
(o] )
+ . 3
S
[en)

Sec. 1-1

Sec. 2-2

Fig. EX. 6.7b Reinforcement details (straight bars)

271




5¢10/m

3¢ 20+2918

0.25
Sec. 1-1

© ol
-] =
1 3 'ﬁ%
E (]
—
< I o
0
‘\5, n
~
A oy o
o} e
- ‘E
wead
(&)
L ’
< 2
iy 3y
S b N
—'\ N\
S
M { \
£
S .
—
B o o
0 3 > o1
E§ [V N I
o «o & ©
©0 m] o
r 1
[w]
, , o
A3
SN (o2}
. / +
n o«
~— ~ /| b
& S
- m

2=
LCy/ 4
[ rcys

2}
/

090

0.25
Sec. 2-2

LC1
50m
2512
318
24518

N
[Lov7)

09'0

Fig. EX. 6.7c Reinforcement details (bent-up vbars)

Example 6.8

It is required to design the continuous beam shown in Fig. EX. 6.8a. The beam
is arranged every 3.25 m on plan. The characteristics compressive strength of
concrete f,, = 30 N/mm’. The yield strength of the longitudinal steel f, = 360
N/mm? and for the stirrups = 360 N/mm”. The applied unfactored dead and live
loads are also shown in Fig. EX. 6.8a.

- 1 |
0d_ 200mlod_ 3o5m . _325m od_ 200m_lod
PoLy = B0 KN
. ALy = 20N D.L.=40 kN/m, L.L. = 15.0 kN/m
EREEEEEEN NN AN NN
; 2.50 m l 3.50 m 3.50 m l 2.50 m l
Fig. Ex. 6.8a
Solution

Step 1: Flexural design

Step 1.1: Calculation of maximum moments

In order to get the design bending moments and shear forces, one has to consider
the cases of loading that give the maximum straining actions.

Case 1: maximum positive moment at the central span
In order to get the maximum positive bending moment at the central span, one

has to use the following loads:
Uniform load at central span =1.4D.L.+1.6L.L.

= 1.4x40+1.6%15=80 kN/m
Concentrated load at central span =14D.L+1.6L.L.
' = 1.4%x60+1.6x20=116 kN/m
Uniform load at end spans = 0.9D.L.= 0.9x40 =36 kN/m
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The beam is twice indeterminate, however, because of symmetry only one
unknown needs to be determined.

Mb = Mc

Applying three moment equation at b

3 72
0+2(Q25+7) M, +7 M, = 6(M+M+ﬂ-)

24 24 16

3 3 2
26 M, =—6 36x2.5 +80x7 +116><7
24 24 16

M, =351.23 kN.m

/ I? 2
Me=(l"£°—;——+P:L)—M,, .=(8°Z7 +'HZX7]—351.23=341.76 kN.m

The loading and the corresponding bendmg moment diagram are shown in the
following figure.

P=116 kN
80 kN/m
m—%"i“r’%umm T T s
2.50m ‘ 3.50m 3.§0m 2.50m

| 351.23

AN e A o 74
l |
| [
; 35123

A §

341.76

|

Case 2: Maximum negative moment at the support _

In order to get the maximum negative bendmg moment at the support, one has to

| use the following loads:

Uniform load at central span and one end span =14D.L.+1.6L.L.
=1.4x40+1.6x15=80 kN/m

Uniform load at other end spans = 0.9D.L.= 0.9x40 =36 kN/m

274

P =116 kN

" 80 kN/m

The calculations are carried out using a computer program. The loading and the
corresponding bending moment diagram are shown in the following figure.

M, =-344.8 kN m M, =-358.7kN .m

Another way for solving the indeterminate beam is to use the 3 moments
equation twice (which gives very close solution)
/

Applying three moment equation at b:

‘ . 3 Z
0+2(2.5+TIM, +TM, =622 80T 16xT
' 24 24 16

19M, +TM, =—9132.12........(1)
Applying three moment equation at c:

3 < 3 2
0+2(2'5+7)M€+7Mb=—6(8OXZ‘5 +80x7 +116><7 )
24 24 16

19M, +TM, =-9304 ......(2)
Solving egs. (1, 2) gives M, and M,

_ 80x7* + 116x7 | 344.8+358.7
midspan 8 4 2

=3413kN .m

Note: Case 2 will also be used to get the maximum design shear forces at the
internal supports.
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Step 1.2: Design of critical sections

The critical sections are shown in the figure below

3.50m | 350m | 250m |

Section No. 1 T-section

Berr = smallest of:
*16t, +b =16x120+250 = 2170 mm
-—Lsi+b =-0'7x5ﬂ+250=1230mm

*C.L to C.L. between beams = 3250 mm
Ber= 1230 mm

Assume beam thickr.tess = 1—;"% =700 mm

d =t ~cover =700-50 = 650 mm
Mll
fcuB

650=C ’341.76><106
T 30x1230

| The point is outside the C;-J curve . 3 < (-‘c?)mi'n

d=C

-~ C =675 & I=0.826

C=0.125%650=81.25mm
a=0.80x81.25=65mm < t~=120 mm

6
g =M ALTEAC o
f,Jd 360x0.826x650

(4s)min = the smaller of:

0.225.]
—f“’xb xd =9£-§-2-0-@x250x650=556mm2

¥

1.3 As(required) = 1.3x1768 = 2300mm*

| (As)min. =556 mm2 < ‘(As)required
Choose A=6®20  Agenoseny =1885 mm’
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Section No. 2 Rectangular section
b= 250 mm

d =650 mm

M=351.23 kN.m Case l —- -—
M,=358.7kN.m Case2 )

- Use M,=358.7 kN.m from case 2 —JTF
d=c, | M
fcu b

6
650 = C”,M . 5 C, =297 &J=0.74
30%250

£ M 358.7x10°
* o f,Jd  360x0.74x650

=207tmm*> ... > A smin

Choose A= 3022 + 320 Ay (choseny = 2082 mm’

Section No. 3

Section No. 3 is subjected to negative moment less than that of sec. 2. Thus, all the
negative reinforcement over section 2 will continue over section 3. Moreover, the code
also requires for each exterior panel to carry a positive bending equals to wL*/16.

IV ER2 L* _80x2.5

; =31.25kN m
16 16
B =%+b =M+2so = 650 mm
Cl=156 —J=0.826
6
4 = M, - 31.25x10 —161mm?
7,74 360x0826x650
m250x 650 =556 mm*
360
Asmin zsmaller Of =210 mmz

1.3x161=210 mm*

But not less than 4, =%250x650 =244mm*

Agmin =244 > A; — use Aguin (3®12)
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Step 1.3: Calculation of development length Step 2: Check of shear

‘The loading and shear force diagram (obtained from the computer program) for

a.,B.n.(y—y) ' case 2 is shown below
ba =1 4 fou H P =116 kN
o =030 2030 0 134 s e T TV T LLT LTI
R P T e i AN AN 2>
| 2s50m | 3.50m 3.50 m 250m |
MNbotom=1.0 - MNwp=1.3 ! ! critical Lection

- 1
For bars in tension:- | \
i

a=1.0 (Straight Bars) and B=0.75 (deformed bars) mTWm |
18 : 1
: MW 243.5 kN WM

3400 kN !

1.0x0.75x1.0x(360/1.15 |
Ly = LD BTN 5 4y | E :

1.0x0.75x1.3x (3 60 /1.15) For the case of uniform load, the critical section is located at d/2 from the support
L({(mp) ={ 4)(1 34 }¢ =57¢

0, =0, ~w ,(d [ 2+ half column width)

For bars in compression:-

0, =340-80%(0.65/2+0.50/2) = 294 kN

o=1.0 (Straight Bars) and p=0.50 (deformed bars) 0,  294x10°

g ET oo —

1.0x0.50x1.0x(360/1.15 ‘ bxd 250x650
XQAIKGO/LL, 45 299

4x1.34 V ’30
9oy =07 [ =0.7 Tg=3.13 N /mm? < 40N /mm?*
Ye .

Qg = 313N /mm?

=181N/mm*

Ld(ba/lom) = {

1.0x0.50x1.3% (360/1.15)
L = { GO =
Sdopy 4%1.34 1 =389

. . . _ 2 . . . !
Or we can directly use the coefﬁcwnts from Table (5.3) with £,,=30 N/mm 0, < Gumm the concrete dimensions of the section are adequate for shear.

For Tension: Lagottomy=30D, Litop=65®P ’,? ’
. ‘ 3 e 30 2
For Compression: Lgpottomy=40®; La(topy=52D T 0210 7_c -0 15 vt

Gy > Gy web reinforcement is required
Gsu =qy 059,y

. q,, =1.81-0.50x1.07 =1.275N / mm®

~1o ' 27a



Ay 9su
/[ e
bs  fylrs
2x A, 1.275
u= =

" 250xs  360/1.15

For ®=10mm Ag=78.5 mm’ s=154 mm
Using 7 ® 10/m (s=142 mm ...0.k)
Check for minimum stirrups

i = O%‘:%: 0.0011 (not less than 0.0010 for high grade steel)
,

As;'(min ) = Hein xbxs

Ay = 0.0011x250%142 = 39.7 mm? < (2x 78.5 mm®) 0.k

Step 3: Reinforcement detailing

Complete reinforcement detailing for the beam is shown in Figs. EX. 6.8b and
EX 6.8¢ for the case of straight and bent bars, respectively.
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Fig. EX. 6.8c Reinforcement details (bent-up bars)

Example 6.9

It is required to design the continuous beam with unequal spans shown in Fig.
EX. 6.9a. The beam is arranged every 2.75 m on plan. The characteristics
compressive strength of concrete fo, = 30 N/mm’. The yield strength of the
longitudinal steel f, = 360 N/mm? and for the stirrups = 360 N/mm?. The applied
unfactored dead and live loads are shown in Fig. EX. 6.9a. These loads can be
used for designing the beam for bending as well as for shear.

i S

0.5 5.50 m 0.9 2.00m 105 550 m 05
D.L=50kN/m',LL=15kN/m’
HHlH1HHlHHHHLHHHHHHHJ
‘ 6.00 m ‘ 2.50m ‘ 6.00 m __L
N I | !
Fig. EX. 6.9a
Solution :

Step 1: Flexural design
Step 1.1: Calculation of maximum moments

w,=14DL+1.6LL =1.4x50+1.6x15=94kN /m'’

The absolute bending moment diagram (the envelope of the bending moment)
that is obtained from two cases of loading is obtained using a computer program.

The results are shown below.

A

R
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Step 1.2: Design of critical sections

The critical sections are shown below

| ||
g F AN ERTAS A

i 6.00m | 250m | 6.00m |

For Section 1-1 M (+ve)=301kN.m
For Section 2-2 M, (~ve) =306.6kN.m

Section No. 1 T-section

Bes = smallest of:
®16t, +b=16x120+250=2170mm
-—L-51+b =g'—8—)<360ﬂ+250=1210mm

oC.L. to C.L. between beams = 2750 mm

By =1210mm PR : " R—

span
10-12
d =t—cover =600—-50 =550 mm

Assume beam thickness (t) = =600 mm

My
SeuB

) 6
550 = cl,/m - C =604 & J=0.826
30x1210

“The point is outside the C;-J curve - 3 < (%)mi,, Use 3 = (%)min =0.125

=G

¢=0.125x550 = 68.75mm

a=0.80x68.75=55mm < =120 mm

(]
g =Moo 000 e e
7,74  360x0826x550
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(As)min = the smaller of:

be xd =

y

1.3 Ay(required) =1.3x1841=2393 mm?’

022530, 3505550 = 471

(As)min. =471 mm2 < (As)required

Choose A=3022+3018 Agichosen) =1902 mm’

Section No. 2 Rectangular section

M, (~ve)=3066  b=250 mm d=550mm — - _%_-_

d=c, M, . +
Jeu b

6
550 = C,JM ~C =272 andJ=0.71
30x250

4 oM. 3066x10°
$Tf,Jd  360x0.71x550

=2181mm?

Choose A=6D22 Asg(choseny =2281 mm?
Section No. 3

Section No. 3 is subjected to negative moment less than that of sec. 2. Thus, all the
negative reinforcement over section 2 will continue over section 3. Moreover, the code
also requires for each interior panel to carry a positive bending equals to wL%/24.

_w, [} 94x2.5

’ = 24.5kN m
4 24
B =£52—+b =0‘7X—52500+250=6oomm
Cl=149 —J=0.826
6
= 2T g
7,74  360x0826x550
022530 4. 550 470.7 mm?
360 |
A.r min =smaller Of =194.8 mm 2

1.3x161=194.8 mm?

285




But not less than 4, =%250x 550 =206mm*

Agmin =206 > Ag — use Agmin 2912)

Step 1.3: Calculation of the Development Length

J,
a.pa (== y)
L = _______S_
d =1 a7, }¢
fre =030 /L’“—‘- =030 Jﬂ = 1.34 N/mm*
Ve 1.5
Tbottom™ 1.0 ) TNrop= 1.3

For bars in tension:-
o=1.0 (Straight Bars) and p=0.75 (deformed bars)

1 0x0.75%x1.0x(360/1.15)
Ld(l)oh‘um) 4Xl 14 }¢

444

1.0x0.75x1.3x(360/1. 15)}¢

Lzl(lop) { 4 1. 14

57¢

For bars in compression:-
o=1.0 (Straight Bars) and [=0.50 (deformed bars)

1.0x0.50x1.0x(360/1.15
L{I(I)ollom) { 4 1 351 )} ¢ 29¢
1 0x0.50%1.3%x(360/1.15
L«l(lop) 4X1 33 )} ¢ 38¢

Or we can directly use the coefficients from Table (5.3) with £,,=30 N/mm’

For Tension: Ligbottomy=30D, Li(topy=65®

For Compression: Lywottom=40®, Liopy=52D

104

Step 2: Shear design
The shear force diagram is shown in the following figure

i 333kN
283 |

““m“lﬂllm ......mmumlmllllll

238 kN critical section 215kN

T

I

For the case of uniform load, the critical section at d/2 from the support.
0, =Q, -w,(d /2 +half column width)
0, =333-94x(0.55/2+0.50/2) = 283.65kN

0, 2650
250x550

2.06 N /mm*

qu:

Quong =07 F 07/ =3.13 N/mm® <40N /mm*——q, .. =3.13N /mm’

4y < Quman the concrete dimensions of the section are adequate for shear.

q,, =024 ’& =0.241’—1§% =1.07N/mm*
Ve .

9y > Geu web reinforcement is required

g, =4, —0:54,, =2.06-0.50x1.07 =1.53KN /m’

2xA4, © 153
250xs  360/1.15

For ¢ =10 mm Ag=78.5 mm’

U=

s=128 mm . —Using ® 10 @ 125 mm (8 ® 10 /m")
Check for minimum stirrups
Lo = 04_04 _ 00111 (not less than 0.0010)
f, 360
Ay = Mo b5 = 0.00111x250x125 =34.7 mm* <(2x78.5 ...ok.)

Step 3: Reinforcement de'railing'

Complete reinforcement detailing for the beam is shown in Figs. EX. 6.9b and
EX. 6.9c¢ for the case of straight and bent bars, respectively.
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TRUSS MODEL FOR BEAMS FAILING
IN SHEAR

Photo 7.1 Burj Al Arab, Dubai.

7.1 Introduction

In the previous chapters of this book, the design for bending and the design for shear
have been treated independently. Shear-flexure interaction in slender R/C beams can
be expressed in terms of a mathematical-mechanical model. The best model for
slender beams with web reinforcement is the Truss Model. It provides an excellent
conceptual model to show the forces that exist in cracked R/C beams.
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Many international design codes for reinforced concrete structures have used the
truss model as the basis for design procedures for shear and flexure. The
Egyptian Code for Design and Construction of Concrete Structures does not
explicitly mention the truss model as a design tool. However, it includes
provisions that satisfy its requirements. The information presented in this
chapter is adequate for a practicing engineer to understand and to apply the truss
model. Researchers, however, could find more details in scientific papers related
to the subject.

Chapter (7) makes frequent reference to the information presented in the
previous chapters of this book and assumes that the reader is familiar to what
have been presented.

7.2 Background

The objective of this section is to provide some basic concepts before
introducing the reader to the truss model.

7.2.1 Slender Beams Versus Deep Beams

Figure (7.1a) shows a cracked reinforced concrete beam. The initial stage of
cracking generally results in vertical flexural crackmg Increasing the external
loads results in formation of diagonal cracks.

! 1
LN

. v— 1

\ Cracks -

a: Cracked beam

! dx I
C C+dC
M M+dM
Q Q +

L ) Tedr
b: Portion of the beam between two cracks

Fig. 7.1 Equilibrium of a segment of a cracked beam
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Referring to Fig. (7.1b), the equilibrium of a section between two diagonal
cracks leads to the following equation:

AM = Q dX coieeiiiiriciicionnecrcen s (7.1a)
L O (7.1b)
ja jd

in which (dT) is the gradient of the tension force in the longitudinal steel, Q is
the shear force and jd is the lever.arm.

Hence, the relationship between the shear force and the tension force in the steel
reinforcement can be written as:

d
= (T Jd) oo 7.2
0=—(rJd) (712)
which can be expanded as:
_d(r) ., dUd), 13
o= o jd R (7.3)

Two extreme cases can be identified;

1- If the lever arm ,jd, remains constant as assumed in the classical beam
theory, then:

% =0 and 0= d(T)

‘where d(T')/dx is the shear flow across any horizontal plane between the
~ reinforcement and the compression zone as shown in Fig. (7.1). The above

equation indicates that shear transfer is accompanied by a change in the tension .
force in the steel reinforcement and a constant lever arm. This is called a shear
transfer by “beam action”.

2- The other extreme case occurs if the shear flow, d(T')/dx (which is equal |
to the change in the tension force in the steel reinforcement), equals zero,
giving:

_ , d(jd)
E_O and o=T o
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This occurs if the shear flow cannot be transmitted due to change in the force in

the steel reinforcement. In such a case, the shear is transmitted by “arch action”
rather than by beam action.

Figure (7.2) shows the flow of internal forces in a relatively deep beam. In this
member, the compression force, C, in the inclined strut and the tension force, T,
are constant. The longitudinal reinforcement provides the tie to the arch.

It should be noted that arch action is not a shear mechanism in the sense that it
does not transmit a tangential force to a nearly parallel plane. However, arch
action permits the transfer of the applied load directly to the supports and
reduces the contribution of the other types of shear transfer.

compression

Jjd(varies)

tension
- —

Fig. 7.2 Arch action in deep beams

The behavior of beams failing in shear varies widely depending on the relative

contribution of beam action and arch action. In shallow (slender) beams, shear is -

transmitted by beam action. In deep beams, arch action dominates the behavior.

7.2.2 Analysis of Forces in R/C Slender Beams

The external loads acting on a cylinder reinforced concrete beam are resisted
through a system of internal forces. There are two approaches to obtain the
internal forces in slender beams. The first approach is to investigate the
equilibrium of a free body of the beam (also called sectional analysis). The

second approach is to analyze the beam using a conceptual model that represents
the flow of forces (for example the truss model).

293

7.2.2.1 Sectional Analysis

The design of reinforced concrete beams can be based on analyzing the critical
section for bending and the critical section for shear independently. Som.e
additional precautions could be taken to account for the effect of their
interaction. Consider, for example, the beam shown in Fig. 7.3a. Applying tk}e
flexural theory of reinforced concrete presented in Chapter (2), results in
designing the critical section for bending (Section 1-1 in Fig. 7.3b?. On the other
hand, analysis of the forces transferring shear across th¢ 1n9lmed crack, as
presented in Chapter (4), results in design equations for shear (Fig. 7.3c).

@

L
/‘/H.\\\WJ

-a: Loaded beam

—*4————8—-—4— O-ﬂ:u
. n | + . C
1: ! fflc .a
! Hoo b Qe
i i d v
'E :l )/Qa Ast fy/’Ys
E Ast fy/‘ys ‘
----------- Fo=z +T " —% - leoeee N
| d o
T 1
. ¢: Shear analysis b: Flexural analysis

Fig. 7.3 Séctional analysis of R/C beams
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7.2.2.2 Mechanical - Mathematical Models

Researchers have developed a number of models to express the behavior
of slender reinforced concrete beams after cracking. Among the best of
them is the Truss Model, which provides an excellent conceptual model
to show the forces existing in a cracked concrete beam. A combination
of the sectional analysis and the fruss model has led to the recent

developments in the national and international codes for design of R/C
structures.

Photo 7.2 Nile City Tower during construction, Cairo, Egypt.
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7.3 Truss Model for Slender Beams

As shown in Fig. 7.4, a beam with inclined cracks develops compressive and
tensile forces, C and T, in its top and bottom parts “chords”, vertical tension in
stirrups “vertical member” and inclined compressive forces in the concrete
“diagonals” between the inclined cracks. This highly indeterminate system of
forces is replaced by an analogous truss.

S . 1
N <———/ f \0 —— N
N
-
// ‘ 11 - AN X \\

i

& / & P %""',. % % 2
A »
Tension / . \. Tension chord
Q member Q

(b) Pin-jointed truss

Components of the Truss Model

- Compression Chord ——» Concrete in the compression zone
- Tension Chord ——» Steel in the tension zone

- Vertical tension members ~ ——  Stirrups

- Diagonals —» Concrete in diagonal compression

Fig. 7.4 Truss analogy for beams falling in shear .
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7.4 Traditional 45-Degree Truss Model
7.4.1 Formation of the 45-Degree Truss

F?gure 7.5 shows a truss model for a simple beam in which the directions of the
diagonal compression stresses are assumed to remain at 45 degrees. This truss
that models a cracked reinforced concrete beam can be formed by:

e Lumping all of the stirrups cut by section A-A into one vertical
member.

. I.,umping the diagonal concrete members cut by section B-B into one
diagonal member with an angle of inclination of 45° with respect to the

beam axis. This diagonal member is stressed in compression to resist the
shear on section B-B.

e Considering the longitudinal tension reinforcement as the bottom chord
of the truss.

e Considering the flexural compression zone of the beam acts as the top
chord.

Fig. 7.5 45-Degree Truss Model
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7.4.2 Evaluation of the Forces in the Stirrups

Each vertical member represents a number of n stirrups. Hence, the area of a
vertical member is given by:

jd
s

areaof avertical member = n A,

in which jd is the lever arm, s is the spacing between stirrups and 4, is the area
of all the branches of one stirrup. '

From the free body diagram shown in Fig. 7.6, the shear force is equal to the
tension force carried by the stirrups and can be calculated as:

ly.)jd
o-lhlr)id S (1.5)

S

Note: Equation (7.5) is equivalent to equation (4.17) derived from sectional

analysis with d is replaced by jd.

l Tension force -

T M carried by stirrups =n Ast fh,

Fig. 7.6 Calculation of forces in stirrups

It should be mentioned that the previously described Truss-Model ignores the
concrete contribution to the shear strength of the beam (q,). This simplification
will be discussed briefly in a later section.
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7.4.3 The Compression Force in the Diagonals

The free body shown in Fig. 7.7 is a cut by a vertical section B-B. The shear

force at section B-B, Q, must be resisted by the vertical component of an
inclined compressive force D in the diagonals.

Fig. 7.7 Calculation of the diagonal compression force

Equilibrium of forces at section B-B gives:

O=D 50457 wccoeirirrieeeerieceeta e (7.6)

The width of diagonal member is b and its thickness is (jd cos45°). Hence, the
total compression force resisted by the diagonal member is equal to the average
compression stress in the diagonal direction, f,,, multiplied by the area of the
diagonal member. Hence, the diagonal force D can expressed as:

D=f,b (/d cos45°) ................................... (7.7

Substituting equation (7.7) into equation (7.6) results in:

0= 1., b (jd cos45°)sinds® ....oooeverervcrrieer. (7.8)

Q=05F3b Jd e (7.9)

Equation 7.9 indicates that the shear strength of a concrete beam reaches its
maximum value when the compressive stress in the web reaches the crushing

ann

strength of concrete, f,,, no matter how much web reinforcement is provided,
1.e.,

o R N T R (7.10)

A Sy ly, jd
S

0= ST A T (7.11)

From Eq. (7.9), the compressive stress in the diagonals is given by

The web of the beam will crush if the inclined compressive stress £, exceeds
the crushing strength of concrete in the compression diagonals, f,. In other-
wards, the compressive stresses in the web of the beam should satisfy:

The compressive strength of concrete in the web is called the “effective strength
of concrete” and it tends to be less than the cube or the cylinder strength of
concrete. This is attributed to the fact that concrete in the web is cracked as

shown in Fig. 7.8.
g Concrete cube

foul oo !

A Stress

—————————————— Concrete strut

Fig. 7.8 Effective compressive strength of concrete
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The effective concrete strength is frequently expressed as:

fu=B. (0.67&) ................................. (7.14)

c

where B,is efficiency factor that takes into account the effect of cracking on the
effective compressive strength of the concrete in the strut.

For a strut in normal weight R/C beams that are not subjected to an axial tension
force, the value of B, can be reasonably taken equal to 0.6.

If Eq. 7.13 is not satisfied, then crushing of concrete in the compressioh
diagonals would occur (shear-compression failure).

Note: Equation 7.8 can be written in the form:

Q9 _ fa,b(jd cos45”)sin45"
bjd bjd

The above equation can be further simplified as:

g=f, sin45° cosd5° =05 f,

‘Hence, it can be seen that there is a direct relation between the cdmpressive
stresses developed in the diagonal struts, fo, and the applied shear stress, q.

Accordingly, in order to prevent crushing of the concrete in the compression
struts, one has two options:

1. Limit fchei compression stresses developed in the web, f 4, to be less than
the effective compressive strength of concrete f,,. - .

2. Limit the applied shear stress, g, to be less than the maximum ultimate
shear stress, Gumax-
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7.4.4 The Axial (Longitudinal) Force Due to Shear

Figure 7.8 re-examines the equilibrium of a free body of the beam resulted from
a vertical cut R-R

Ny C=M/jd
A
N l id
Q j
D Y
T=MIjd

Fig. 7.8 Additional longitudinal force due to shear

As mentioned in Section 7.4.3, the shear force Q at Sec. B-B is resisted by the

_ vertical component of the diagonal compression force D. Force equilibrium

indicates that a horizontal tension force N,must be developed at Sec. B-B. This

force is equal to:

N, 20 ceeeeeeerinnrinssnnssresseesessssnsennenn{ 1:15D)

Since the shear is assumed uniformly distributed over the depth of the
beam, N, acts at mid-depth and N, /2 will act on both the top and the bottom

chords of the truss. These forces will be added to the compression force, C, and
the tension force, T, caused by flexure, C=T=M/jd. Hence, the forces in the
top and bottom chords of the truss at Sec. B-B are as follows:

Compression force in the truss member at Section B-B = -C + N¢/2

Tension force in the truss member at Section B-B = T + Ng/2
In other wards, the force in the compression chord of the truss will be less than

that caused due to the bending moment and the force in the tension chord of the
truss will be more that caused due to the bending moment.
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7.4.5 Comments on the 45-Degree Truss-Model

1- The 45-degree truss model neglects the shear components Q. ,0 « and O,

shown in Fig. (4.4) in Chapter (4). Thus truss models in general, do not
assign any shear “to the concrete” and predict that beams without shear
reinforcement have zero shear strength.

2- Similar to any conceptual model, there are some simplifications in the truss
model. The assumption of 45° angle of inclination of the diagonal cracks

along the span is, of course, not correct. However, it gives conservative
results in most cases.

7.4.6 Comparison of the Truss Model and ECP 203

1. The ECP 203 uses the truss model Eq. 7.5 to design the stirrups.
However, to account for the fact that concrete contributes to the shear -

strength of the beam, ECP 203 assigns part of the desxgn shear force to
be resisted by concrete.

2. The truss model presents Eq. 7.12, that is resulted from the analysis of
the forces carried by the diagonals. It indicates that the web of the beam
will crush if the inclined compressive stress exceeds the effective
compressive strength of concrete. Instead of limiting the compressive
stresses in the web, the ECP 203 avoids crushing failure of the web
through limiting the shear stresses in the web to an upper limit value
(9. < Gumar)-

3. The truss model indicates that there is an additional longitudinal
tension force due to shear.. This tension force should be added to the
tension force resulted from the bending moment when calculating the
requxred longitudinal steel. This fact is partially taken into consideration
in the ECP 203 through using the shifted bending moment diagram in
detailing the longitudinal reinforcement.
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Example 7.1

A simply supported beam of rectangular cross section carries a factored load of
100 kN/m. The distance between the center-lines of the supporting columns is
8.0 m and the width of the support is 0.8 m. The beam is shown below.

Data

b=250 mm

t =1000 mm

fou = 25N/ mm?

f, = 240N /mm’ (stirrups), f, =360N/mm’ (longitudinal steel).

1- Based on reasonable assumptions, draw a possible 45-degree truss that
would model the flexure-shear behavior of the beam.

2-  Draw the stirrups force diagram.

3-  Choose the distribution of stirrups that would result in simultaneous
yielding of all vertical members.

4- Draw the tension force diagram obtained from the ordinary. flexure theory.
On the same drawing, plot the tension force diagram obtained from truss
analysis.

5- Is there a possibility of web crushing of this beam (Assume that 3:=0. 6).

100 kN/m' CL|

EEEEEEEREREEREER

0.40 ‘ 3.60m

I
?
|
|
|
I
|

__._-——i—--—-—

Simply supported beam subjected to uniform load
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Solution

Step 1: Forming the truss model

The development of the 45-degree truss model is shown in Fig. EX 7.1b. The
value jd can be reasonably assumed equal to about 0.9d, where d is the effective
depth of the beam. Hence, jd=0.8:=0.8m. In order to form a 45° truss, one l}as
to lump the stirrups every 0.80 m in one vertical member. Hence, the
concentrated oad at each joint (P) equals to:

P=wx0.8=100x0.8 =80 kN

It can be seen that the angle of inclination of all the diagonal compression
members located in the clear span of the beam is 45°. The diagonal member
located inside the column transmits the vertical joint load directly to the column
support. In spite of the fact that its inclination is not 45°, the truss is referred to

as a 45° truss since the inclination of the effective diagonals in the clear span of
the beam is 45°.

Step 2: Drawing the stirrups force diagram .
Forces in the vertical members (stirrups)

wx L

2=

=100x4 =400 kN

S, =Q~ P =400-80 =320 kN

S, =0~2xP=400-2x80=240 kN
S, =0 -3xP=400-3x80 =160 kN
S, =0-4%P=400-4x80=280 kAN

| The diagram that shows the variation of the forces in the vertical members (and
hence the variation of the forces in the stirrups) is presented in Fig. EX. 7.1c. In
this diagram, the force in each vertical member is drawn as a constant number in
the tributary length of each vertical member.

| w=100 kKN/m’ oL

EEEEEREEEEEERRER!

X {
X

0.40 3.60m

a) Simply supported beam subjected to uniform load

80 kN 80 kN 80 kN 80 kN 80 kN I
* * ) + Ya |
Ny - < N Ny |
St s2 s3 S4 l 0.8
F . F1 F2 F3 F4 |
- 0.40 0.80 0.80 0.80 0.80 0.40 l
QAOO# ! | | | | |

b) Truss model for design

320 240

160 80 kN

¢) Variation of force in stirrups (kN)

200

Tension force
from beam theory

760

920 1000

d) Variation of tension forces (kN)

Fig. EX. 7.1 Developmenf of the truss model for design
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Step 3: Distribution of the stirrups

The choice of the stirrups that would result in yielding of all vertical members
means that one should satisfy the following equation:

oo A, (f,1y.)jd A, x240/1.15x800

S, S,
Member | Force (S;), kKN Diameter(mm) | 4y (mm®) |s required (D) | S chosen (T0T)
S 320 10 157 82 80
S 240 10 157 109 105
S; | 160 10 157 164 160
S4 80 ' 8 100 208 200

' Step 4: The tension force diagram
| Step 4.1: According to the flexural theory
The bending moment at any point of the beam equals

2
M, =0 x-2E =400 x-50 x>

The tension force in the longitudinal steel can be calculated from the flexural
theory as follows:

M _M,
'jd 08
The calculations are carried out in the following table

X (m) 0.8 1.6 2.4 3.2 4

M;(kN.m)| 288 | :512 672 768 800

T; (kN) 360 640 840 960 1000

Step 4.2: According to the truss model

| The tension force aécording to the truss model can be obtained through one of
the following two options:

e Option 1: Analyzing the forces at the bottom chord of the 45- degree
truss.

e Option 2: Adding the value of the tension force due to shear to that due
to the bending moment.

Option 1
The calculations are carried out by using the method of sections to determine the
forces in the bottom chord.

For example, the forces Fy is calculated as follows
Taking the moment about point (a) gives

F,(0.8) =400x 3.6—80><(0.8+1.6+ 24+3.2)
F,=1000 kN '

Similarly, the rest of the forces in the other members can be obtained as follows:

F,(0.8) =400%2.8=80X (0.8+1.642.4) cvoummmmiminsisasenensierensennnss F3=920 kN
Fy(0.8) =400%2.0~80%(0.8+1.6) ervcvruuvrummscnmmmsnisssserssssnsiesccnase F,=760 kN
F(0.8) =400X1.2-80X(0.8) rvvvnerummcmesssssemsmmmmsssssnssssenesasensssoness F;=520 kN
F0.8) =400X0.4 weverereeecrevvacemesemssssssssssssssssssssesssssssesnsnsnsesesss E=200 KN
Option 2

The axial force developed due to shear at a certain section equals to .half the
value of the shear force at that section as shown in section 7.4.4. The axial force
is calculated at the middle of each member of the bottom chord as follows:

x (m) 0.8 1.6 24 32
Shear force (Q)) 320 240 160 80 -'
Longitudinal axial 160 120 80 40
force (Ngi/2) ‘

The value in the tension chord is determined as the sum of the tension obtained
from the bending theory and the axial force due to shear

F=T,+N,/2
X (m) 0.8 1.6 2.4 32
Tension from the bending 360 640 840 960
theory (T})
Longitudinal axial force (N 160 120 80 40
/2)
Tension chord force 520 760 920 1000
F,=T,+N,/2
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The variations of the tension force according to the bending theory and to the
truss model are shown in Fig. EX. 7.1d. It can be seen that at mid span, where
the shear force is equal to zero, the tension force obtained from the bending
theory is equal to that obtained from the truss analysis.

Step 5: Check web crushing

To check the possibility of web crushing, one should compare the maximum
stresses in the web to the effective concrete strength. The compression force (D;)
in each diagonal member can be obtained through the analysis of the members
in the truss. Alternatively, it can be obtained using'the following equation:

-

= in 45

where (J; is the shear force at the center of the panel (or the center of the
diagonal).

member (Q), kN D;, kN
D, 320 4525
D, 240 3394
D, 160 226.3
Dy 80 - 113.1

The maximum compression force equals to 452.5 kN
D=f,b (jd cqs45°)
452.5x1000=£,, x250%(800 cos45°)

fu =32N/mm?

f.=p. (0,67ﬁ) = 0.6><0.67x-13§5- =6.7 N/ mm?®

L4

Since f,, < f.,, the beam is considered safe against web crushing.

Note: As shown in Fig. EX. 7.1, the truss analogy predicts that in order to resist
shear, beams needs both stirrups and longitudinal reinforcement. This is an
important behavioral aspect that can not be noticed using ordinary flexural
theory. '

ana

Example 7.2

The figure shown below is for a cantilever beam of a n_ectangular cross section
that carries two concentrated loads. ’

Data

5 =300 mm

= 1100 mm

f. =30N/mm’ |

f, =250 N/ mm® (stirrups), f, =360N / mm”* (longitudinal steel).

It is required to:

1- Propose a possible 45°-Truss that would model the flexure-shear behavior of
the beam.

2- Draw the stirrups force diagram.

3. Choose the distribution of stirrups that would result in simultaneous
yielding of all vertical members.

4- Draw the tension force diagram obtained from the ordinary flexure theory.
On the same drawing, plot the tension force diagram obtained from fruss

analysis.
5- Is there a possibility of web crushing of this beam (Assume f,=0.6).

150 kN 150 kN
| | {
4 11
| i
n 0.90 5.40 m ‘ .
R/C wall
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Solution

Step 1: Forming the truss model

One of the possible truss models that represent the flexure-shear interaction of
the beam is shown in Fig. EX. 7.2. The value jd can be reasonably assumed
equal to about 0.9d, where d is the effective depth of the beam. Hence,
jd=0.8t=0.8x1.1209m.

The development of the 45-degree truss model is shown in the Fig. EX 7.2b. It
can be seen that the angle of inclination of all the diagonal compression
members located in the clear span of the beam is 45°. The diagonal member
located inside the column transmits the vertical joint load directly to the column
support.

Step 2: Drawing the stirrups force diagram

Forces in the vertical members (stirrups)

0 =150+150 =300 kN
M =150%6.3+150x3.6 = 1485 kN
5,=8, =8, =300 kN

S, =8, =8, =150 kN

Step 3: Distribution of the stirrups

The diagram that shows variation of the force in the vertical members (and
hence the variation of the force in stirrups) is presented in Fig. EX. 7.2.c. In this
diagram, the force in each vertical member is drawn as a constant number in the
tributary length of each vertical member. The choice of the stirrups that would
result in yielding of all vertical members means that one should satisfy the
following equation:

Assume that the stirrups diameter is 10 mm, 4,~ 157 mm?® (for two branches)
oAUy /7)7d_ 157x250/1.15%900
S, S,

i i

PRV RS

150 kN 150 kN
\-————» X
i
0.90 . 540m |
a) Cantilever beam subjected to concentrated loads
150 kN 150 kN

4 £ Fi F2 F3 4 L

T by

51 82 83 54 s se

r 090 { 090 | 090 | 080 | 080 | 080 || 090 |

-

300

KN
b) Truss model for design .

300 kN

| 150 kN

¢) Variation of force in stirrups (KN)

[~ . 1650
Actual

~ 1350

From truss

\ from beam theory

d) Variation of tension forces (kN)

Fig. EX. 7.2 Development of the truss model for design
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members | Force (Si), KN | S required(m) | S ¢posen(mm)

$1S:8; | 300 102 100 (10¢10/m’)

Su85,Ss | 150 204 200 (5¢10/m")

Step 4: The tension force diagram
Step 4.1: According to the flexural theory

The tension force in the longitudinal steel can be calculated from the flexural
theory as follows: '

M _M,
jd 09
The calculations are carried out in the following table

x (m) 0 0.45 135 | 225 | 315 | 405 | 495 | 585

M;(kN.m) | 1485 1350 | 1080 | 810 540 | 3375 | 2025 | 67.5

T;(kN) ~| 1650 | 1500 | 1200 { 900 600 375 225 | 75

Step 4.2: According to the truss model

The tepsion force due to the truss model can be obtained through one of the
following two options:

. Option 1: Analyzing the forces at the top chord of the 45- degree truss.

Option 2:. Adding the value of the tension force due to shear to that due to
the bending moment.

Option 1

The ca}culations are carried out by using the method of sections to determine the
forces in the top chord.

For example, the forces Fy is calculated by taking the moment about point (a):

Fy(0.9) =150%0.9 ..cen........ bRt Fs=150 kN

| Similarly, the force in other members can be calculated as follows:

F,(0.9)=150x18§........... ettt et s e e e e e F5s=300 kN

F (IR o L1 O At F;=450 kN

Fy(0.9) =150%3.6+ 150X 0.90 ovuunrrvusssnrcessssecrenssnsremssssssmssssssnces F;=750 kN

F,(0.9)=150x4.5+150%X1.8 woorerureernnene et te et rerranenaen F,=1050 kN
F(0.9) = 150X 5.4+ 150X 2.7 weuvemrmceriumsimmimmnmssnssssssusscssessessensces Fi=1350 kN
F (0.9) = 150X 6.34150%X3.6 wevureeermcurmrmrsrersssssssessissssssssensssessnes F=1650 kN
Option 2

The axial force developed at the top chord of the beam due to shear equals half
the shear force at that section as shown in section 7.4.4. The axial force is
calculated at the middle of each panel as follows:

x (m) 1.35 2.25 3.15 4.05 4.95 5.85
Shear Force 300 300 300 150 150 150
Longitudinal Axial 150 150 150 75 75 75
Force (Ng/2)

The value in the tension chord is determined as the sum of the tension obtained
from the bending theory and the axial force due to shear

F,=T+N,/2

X (m) 135 | 225 | 315 | 405 | 495 | 585

Tension from the bending | 1200 | 900 | 600 | 375 | 225 75
theory (7;)

Longitudinal axial force 150 150 150 75 75 | 75
(N qi / 2)

Tension chord force 1350 1050 750 450 300 150
Fy=T,+N,/2 | |
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Step 5: Check web crushing

To check the possibility of web crushing, one should compare the maximum
stresses in the web to the effective concrete strength. The compression force (D;)
in each diagonal member can be obtained through the analysis of the members
in the truss. Alternatively, it can be obtained using the following equation:




D, = ,Q"
sin 45

where Q; is the shear force at the center of the panel (or the center of the
diagonal).

members (Q), kN D;, kN
D1=D2=D3 300 4243
D4=D5=D5 150 ) 2121

The maximum compression force in the diagonal equals 424.3 kN
D=f.,b (jd cos4s’)

| 424.3%1000= £,, x300x(900 cos45°)

fu =22 N/mm*

S =B [057&) = 0.6x0.67x% =8.04N / mm?

c

Since f,, < f.., the beam is considered safe against web crushing.

Note: As shown in Fig. EX. 7.2, the truss analogy predicts that in order to resist
§hear, beams nefeds both stirrups and longitudinal reinforcement. This is an
1;1np011ant behavioral aspect that can not be noticed using ordinary flexural
theory. : T oo
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7.6 The Variable-Angle Truss Model
7.6.1 General

In the variable-angle truss model, the angle of inclination of the cracks is not
equal to 45°and it might vary in value along the span of the beam.

Figure 7.9a shows a beam carrying a uniformly distributed load. The detailed
truss corresponding to such a beam is shown in Fig.7.9b. In reality, each stirrup
represents a vertical truss member. The tensile members are the vertical stirrups
and the longitudinal steel at the bottom. The compressive members in the truss
are really forces in the concrete, not separate truss members. The truss shown in
Fig. 7.9b is statically indeterminate. If all the stirrups yield at failure, the truss is_
called a plastic truss model and it becomes statically determinate since the force
in each vertical member will be known (equals to 4, f,/1.15). The truss shown

in Fig. 7.9b can be simplified for design purposes, design truss, as shown in Fig.
7.9¢c. This simplification is made through assuming a suitable angle of

uniform load W

a) Simply supported beam subjécted to uniform load

o NN RARRRRRRR
b) Detailed truss model of beam
W Jd/ tan©
[

H R R B I

1 gd/tan® | Jd/tan® |v Jatane | Jdtan® | Jd/tan® | Jd/tan® |

¢) Truss model used in design

Fig. 7.9 The variable angle truss model
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7.6.2 Analysis of the Variable Angle Truss Model

The internal forces of the truss model in which the angle of inclination of the

cracks is assumed to be equal # can be derived in a similar way to that followed
in the 45-degree truss model.

Reﬁ?rring to Fig. 7.10, the vertical component of the shear force is resisted by
tension forces in the stirrups crossing this section. The horizontal projection of
sectlop A-A is (jd/tan6)and the number of stirrups it cuts is (jd/tan8)/s . The
force in one stirrup is 4, £, /y,, which can be calculated from:

T '/ Tension force
0 e carried by stirrups =n 4, £, /%

Fig. 7.10 Calculation of forces in stirrups

Figure 7. 1‘1 shows t}%at the shear force Q at section B-B is resisted by the vertical
componerits of the diagonal compression force D.

Fig. 7.11 Equilibrium of forces at section B-B.

The diagonal member has a width b and a thickness jd cos 6. Hence, the total
compression force resisted by the diagonal member is equal to the average
compression stress is the diagonal direction, £, multiplied by the area of the

diagonal member. Hence, the diagonal force D can expressed as:

D= £,y BJdCOSE oot (7.17)

The shear force Q at section B-B and the diagonal compression force D are
related by: ' '

0
VU U U PR TURSPURPPPO 7.18
sind ( )
Hence, Eq. 7.17 can be rewritten as:

O=foqg bjASNOCOSO ovemrerrnnrrirenn e (7.19)

Equation 7.19 indicates that the shear strength of a concrete beam reaches its
maximum value when the compressive stress in the web reaches the crushing
strength of concrete, £,,, no matter how much web reinforcement is provided.

From Fig. 7.11, the shear force Q is resisted by the vertical component of the
diagonal compression force D. Force equilibrium indicates ‘that a horizontal
tension force N, results. This force is equal to: ’ ‘

This force acts a mid-depth of the beam. Since the shear is assumed uniformly
distributed over the depth of the beam, N, acts at mid-height and N, /2 will

act on both the top and the bottom chord of the truss. These forces will be added
to those caused by flexure.

With the variable angle truss model, the designer can choose any reasonable
angle of inclination of the inclined cracks. The value of the angle 6 should be
in the range 30°<@<60°in order to ensure satisfactory serviceability

performance (to limit the crack width at service load).
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The choice of small value of 6 reduces the number of stirrups required (see Eq.
7.16) but increases the compression stresses in the web (Eq. 7.19) and increases
the tension force N, . The opposite is true for large angles.

It should be noted that the choice of the crack angle means that the designer
“tells the beam what to do”. This is acceptable for the values mentioned.

Many design codes adopt the variable angle truss model as the basis for shear

design. The Canadian Code and the European Code are examples for such
codes.

Example 7.3

The figure given below shows a simply supported beam that is monolithically
cast with a slab. The beam carries 2 concentrated factored loads each having a
value of 300 kN. Data:

b =250 mm

t =800 mm

fou =25N/mm*

f, =280N/mm®(stirrups), f, =360N /mm? (longitudinal steel).

1- Based on reasonablé assumptions, draw a possible variable angle truss
model that would model the flexure-shear behavior of the beam.

2- Draw the stirrups force diagram.

3- Choose the distribution of stirrups that would result in simultaneous yielding
of all vertical members. ‘

4- Draw the tension force diagram obtained from the ordinary flexure theory.
On the same drawing, plot the tension force diagram obtained from truss
analysis. '

5- Is there a possibility of web crushing of this beam (Assume that B3s~0.6).

300kN 300 kKN

||

N1 e
0.425 0.425 34 13 34 0.425 0425
_ 1500 mm
- :
N
e
8.
®| 2
o
4

270




Solution

Step 1: Forming the truss model

- The development of the variable angle truss model is shown in the Fig. EX 7.3b.
The value jd can be reasonably assumed equal to about 0.9d, where d is the
effective depth of the beam. Hence, jd =0.8¢1=0.65m. To form the truss, it is
assumed that the vertical members, representing the forces in the stirrups, are
arranged every 0.85 m. Such an arrangement gives an angle of inclination of the

diagonals in the effective shear span of about 37.4 degrees. This inclination is
quite acceptable.

Step 2: Drawing the stirrups force diagram

The forces in the vertical members (stirrups) are all equal to 300 kN as shown in
Fig. EX. 7.3c. In this diagram, the force in each vertical member is drawn as a
constant number in the tributary length of each vertical member.

Step 3: Distribution of the stirrups

The choice of the stirrups that would result in yielding of all vertical members
means that one should satisfy the following equation:

. 4,(f,/7)jd/tan 0 4 x280/1.15%650/tan37.4

s, s

Member | Force (S;), kKN | Diameter | A4, (mmz) 8 required (TTTY) S chosen (ITIT1)
St 300 10 157 108 100
S; 300 10 157 108 100
Ss 300 10 157 108 100
S4 -300 10 157 108 100
Ss 300 10 - 157 108 100
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300 kN

[

L

0.4250.425 34

a) Simply supported beam subjected to concentrated loads

y 2

A 32 .
S1 S2 S3 S4

F E1 F2 F3 F4

S5

0425 0.85 0.85 0.85 0.85

0.65

—

~ ¥

b) Truss model for design

300 kN

I

¢) Variation of force in stinups (kN)

E\. T=M/jd

Actual = (M/jd +Ng/2) S

N~

From bending theory (M/jd) ~

I R R

From truss

d) Variation of tension forces (kN)

Fig. EX. 7.3 Development of the truss model for design
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Step 4: The tension force diagram

Step 4.1: According to the flexural theory
The bending moment at any point of the beam equals
M= 0 X300 X oottt sttt (x<3.825)

M =300%3.825 = 1147.5 weorvoeeereeerereeeeeeeeeeeees e eeeesee e s eeee s (x>3.825)

The tension force in the longitudinal steel at the middle of each member can be
calculated from the flexural theory as follows:

The calculations are carried out in the following table

X (m) 085 | 17 | 255 | 34 | 415

M;(kN.m) | 255.0 | 510.0 | 765.0 | 1020.0 | 1147.5

T;(kN) 392.3 | 784.6 | 1176.9 | 1569.2 | 1765.4

Step 4.2: According to the truss model

The tension force due to the truss model can be obtained through one of the
following two options:

. Opﬁon 1: Analyzing the forces at the bottom chord of the truss.

¢ Option 2: Adding the value of the tension force due to shear to that
due to the bending moment.

Option 1

The calculations are carried out by using the method of sections to determine the
forces in the bottom chord.

"For example, the force F, is calculated by taking the moment about point (a):

F,(0.65) = 300x 3.825
F~=1765.4 kN

1

Similarly, the rest of the forces can be obtained as follows:

Fy(0.65) =300X2.975 <.vvvieeesneeesmecessscesssesssneccsssescssenessness
Fy(0.65) = 300X 2.125 «.eoovvonreseesessessmeeesseessessssensssesssecsesessns
FL0.65) = 300X 1275 cvvcrveemsmrevsseeesmseessmseeessensessssssessescsenss

F(0.65) = 300X 0425 .oeoevnverreeersesssesiassssasssssssssssesssssssesaees

Option 2

F3=1373.1 kN
F,=980.8 kN
F,=588.5 kN
F=196.2 kN

The axial force developed due to shear at a certain section equals to half the

value of the shear force at that section as shown in section 7.4.4. The axial force

is calculated at the middle of each member of the bottom chord as follows:

Q/2 Qr2
2 - =
No tan @ tan374

x (m) 0.85 1.7 2.55 34
Shear Force 300 300 300 300
Longitudinal Axial 196.2 196.2 196.2 196.2
Force (Ng/2)

The value in the tension chord is determined as the sum of the tension obtained

from the bending theory and the axial force due to shear

F=T+N,/2
x (m) 0.85 17 255 34
Tension from the bending 392.3 7846 | 11769 | 1569.2
theory (7})
Longitudinal Axial Force 196.2 1962 | 1962 196.2
) ,
Tension chord force 588.5 980.8 | 13731 | 1765.4
F=T,+N,/2

The variations of the tension force according to the bending theory and the truss

model are shown in Fig. EX. 7.3d.
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Step 5: Check web crushing

To check the possibility of web crushing, one should compare the maximum
stresses in the web to the effective concrete strength. The compression force (D)
in each diagonal member can be obtained through the analysis of the members
in the truss. Alternatively, it can be obtained using the following equation:

0 300

D:—:
sin @ sin 374

=493.9 kN

where Q is the shear force at the center of the panel (or the center of the
diagonal). _
The maximum compression force in the diagonal equals 493.9 kN

D=f,,b (jdcos37.4°)

493.9x1000= £, x250x(650 cos37.4°)

fu =382N/mm*

Jee =B, [O.67f—°”J =0.6x0.67 x% =8.04 N/mm®

<
Since f,, < f,,, the beam is considered safe against web crushing.

It can be seen that the force in the tension chord halfway between the truss joints
is larger than (T=M/jd) by the amount (Ny/2) as shown by the dashed line. It
should be mentioned that the increase in the tension force due to shear is
equivalent to computing the tension force from bending moment diagram that is
shifted away from the point of maximum moment by an amount jd/(2x tan 0)
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DESIGN FOR.TORSION

T S

Photo 8.1 The bridge over Suez Canal

8.1 Introduction

Curved bridge girders, edge beams of slabs and shells, spiral stair—ca'ses, and
eccentrically loaded box beams constitute examples for members subjected to
high twisting moments accompanied by bending moments and shear forces.

Torsion design provisions in the Egyptian Code have gone through' major
changes based on the results of many researches. This Chapter explains the
causes of torsion in reinforced concrete members, introduces the Space Truss
Model for torsion and presents the ECP 203 torsion design provisions. It a}so
includes many examples that illustrate the application of the ECP 203 torsion
design procedure. ’
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8.2 Equilibrium Torsion and Compatibility Torsion
8.2.1 General

Torsional loading can be separated into two basic categories:

equilibrium torsion where the torsional moment is required for equilibrium of
the structure,

compatibility torsion where the torsional moment results from the compatibility
of deformations between members meeting at a joint.

8.2.2 Equilibrium Torsion

Figure (8.1a) shows a cantilever beam supporting an eccentrically applied load P
at point C, which causes torsion. This torsion must be resisted by beam AB to
remain in equilibrium. If the applied torsion is not resisted, the beam will rotate
about its axis until the structure collapses.

A

B
‘

C .
Fig. 8.1a Cantilever beam subjected to equilibrium

Similarly, the canopy shown in Fig. (8.1b) applies a torsional moment to the
beam AB. The beam has to be designed to resist the total external factored
torsional - moment due to the cantilever slab. Otherwise, the structure will
collapse. Failure is caused by the beam not satisfying condition of equilibrium
of forces and moments resulting from the large external torque.

Fig. 8.1b Cantilever canopy
327

Figure 8.1c shows the girder of a box-girder bridge, in which the truck loading
causes torsional moments. Figure 8.1d shows a preca§t L-shaped beam that
supports a system of concentrated loads that result in torsional moments.

/ Truck loading

Fig.8.1c Box-girder bridge

Eccentric loading

Precast column
with recess

Fig.8.d L-shaped girder
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8.2.3 Compatibility Torsion

Figure 8.2 shows an example of compatibility torsion. The beam AB has an end
“A” that is built monolithically with beam CD. Beam AB can develop a —ve
moment at the end “A” only if beam CD can resist the resulting torsional
moment. From compatibility of deformations at joint A, the negative bending
moment (M) at the end A of beam AB is essentially equal to the torsional
moment acting on beam CD. The magnitude of these moments depends on the
relative magnitudes of the torsional stiffness of CD and the flexural stiffness of
AB. The moment M, and the torsion M, result from the need for the end slope of
beam AB at “A” to be compatible with the angle of twist of beam CD at point
“A”. When a beam cracks in torsion, its torsional stiffness drops significantly.
Hence, the torsion, M, drops and accordingly M. -

M R NG

My °
Fig. 8.2 Compatibility torsion

170

8.3 Principal Stresses due to Torsion

When a beam is éubjected to torsion, M, , shearing stresses are developed on the
top and front faces as shown'by the elements in Fig (8.3a). Thef principal stresses
on these elements are shown in Fig. (8.3b). The principal tensile stress equgl the
principal compressive stress and both are equal to the shear stress 1f. M, 1s fhe
only loading. The principal tensile stresses eventually cause cracking which
spirals around the beam as shown by the line A—B-C_—D-E in Fig. (8..30). Such a
crack would cause failure unless it was crossed by reinforcement. Thls generally
takes the form of longitudinal bars in the comers and stim_xps. Since the crack
spirals around the body, four sided (closed) stirrups are required.

Y _7q

il
— S0

a) Shear stresses due to torsion

==

X

b) Principal stresses

¢) Crack pattern

Fig. 8.3 Principle stresses and cracking due to torsion
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8.4 Thin-Walled Tube in Torsion

As background information to the Egyptian Code torsion provisions, the
behavior of thin-walled tubes in torsion will be reviewed. Figure (8.4) shows a
thin-walled tube subjected to pure torsion. The only stress component in the wall
is the in-plane shear stress, which exhibits as a circulating shear flow F on the
_cross section. The shear flow F is the resultant of the shear stresses, g, in the

wall thickness and is located on the dotted loop. The dotted loop is defined as

the centerline of the shear flow.

Center Line of

/ Shear Flow

Fig. 8.4 Thin-walled tube subjected to torsion

The relationship between the torque, M, and the shear flow, F, can be derived
from the equilibrium of moments about the longitudinal axis of the member as
follows: : '

It can be seen that the integral is equal to twice the area of shaded triangular.

TRUS 7 =2 A, wooveressmmsensssmsssssssmsssssssssssenen (8.2)
M
Sl et 8.3
24, (8.3)

where 4, is the cross-sectional area bounded by the centerline of the shear flow.
The parameter 4, is a measure of the lever arm of the circulating shear flow and
will be called “the lever arm area”.

221

For example, in case of a circular cross-section the integral equals

A 2z 2
24,=4rdi= frdt= [r@do)=22r" e reeen(8.4)
Q 0
The shear stress due to torsion, ¢, is:
| - M 8.5
q9=3 g ———— (8.5)

where ¢ is the thickness of the thin walled tube.

Photo 8.2 HSB Turning Torso 190 metres623 feet 57 stories Completed 2005
tallest building of Sweden
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8.5 Space-Truss Model for Torsion

8.5.1 Components of the Space Truss

Test results indicated that the torsional strength of a solid reinforced concrete
section is very similar to the torsional strength of a hollow section that has the
same overall dimensions as long as the thickness of the hollow section is not less
than a certain limit. This conclusion led to the development of what so called the
“Space Truss Model” that explains the behavior of reinforced concrete beams
subjected to torsion. ’

The space truss theory considers all sections, hollow or solid, to be hollow
sections. It assumes that the reinforced concrete beam behaves in torsion similar
to a thin-walled box with a constant shear flow in the wall cross section. This
theory forms the basis. of the torsion provisions in the ECP 203.

When subjected to torsion, a cracked reinforced concrete beam as the one shown
in Fig. (8.5a) can be idealized as shown in Fig. (8.5b). The cracked beam resists
the applied torsional moment through acting as a space-truss as shown in Fig.
8.6. The space truss consists of’

¢ Longitudinal reinforcement concentrated at the comners.

e Closed stirrups
e Diagonal concrete compression members between the cracks which
spiral around the beam.

The angle of the inclination of the compression diagonals with respect to the

beam axis, 0, depends on the ratio of the force carried by the longitudinal
reinforcement to that carried by the stirrups. :

a) Section of the actual beam

b) Idealized section of the truss

Fig. 8.5 Idealized cross-section for torsion
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The height and the width of the truss are y, and x;, respectively, and are defined
as the shorter and the longer center-to-center dimensions of the closed stirrups.
The shear flow in the idealized cross section of the truss is given by Eq. 8.3. The
total shear force acting on each wall due to torsion is equal to the shear flow
(shear force per unit length) times the length of the wall. Hence, the total shear
force along each of the top and bottom walls is given by:

LA ®8.7)

Similarly, the shear force along each side wall due to torsion is:

o ——— (8.8)

24,

Stirrups

Longitudinal bars
. concentrated at
the corner

Diagonal compressive

stresses acting at angle 6
Thickness of the

idealized tube (is)

Yi

Fig. 8.6 Space truss model for torsion
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8.5.2 Diagonal Compressive Stresses

Figure (8.7) shows one of the four walls of the space truss. The shear force Q,
has been resolved into a diagonal compressive force D,=Q, [sin@, parallel to the
concrete diagonals, and an axial tensile force N,. The force D, is resisted by

inclined compressive siresses, f,,, acting on the compression struts between the
cracks.

Ny
Q
2[ D, "1 2,
Resisting system "
of forces T 7e
o
<@

Fig. 8.7 Wall of the space truss-diagonal compressive stresses

The thickness and the width on which D, acts are (y,cosf) and f, respectively.
The resulting compressive stress is:

. b,
m et eeaaes 8.9
S y, cosf xt, (8.9a)
__Q,/sin8 8.9
I G canfyur, T (8.9b)
— 9 | 8.10
Fu L ainfaneg TT————— (8.10)
Substation of Eq. 8.8 in Eq. 8.11
| ' M
R N (8.11)

24,t, sind cos@
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Similar stresses act in all four walls. These stresses must not exceed the crushing
strength of concrete in the diagonals, f... As mentioned in Chapter (7), the
crushing strength of the cracked concrete in the struts is less than the cube or the
cylinder compressive strength of concrete (See Fig.8.8). The major reason of
that is the existence of a transverse tensile strain. The reduction of the
compressive strength of cracked concrete is sometimes referred to as “concrete
softening in compression”. '

A Stress

Concrete cube

Concrete strut

Fig. 8.8 Reduction of compressive strength of the strut |

Subsisting of Eq. (8.5) into Eq. (8.11), one gets:

S OO 8.12

S sind cos @ ( )
Equation (8.12) indicates that there is a relationship between the shear stress due
to torsion and the compressive stresses in' the concrete diagonals. Hence,
limiting the compressive stresses in the wall can be achieved by limiting the
shear stresses that is resulted from torsion.
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8.5.3 Forces in Stirrups

A section cut along the crack is shown in Fig. (8.9). The crack intercepts n,
stirrups, where n, =y, cotd/s . These stirrups must equilibrate the force Q,. Thus,
assuming that all the stirrups yield,

TR S 0 5 Y ¢ NS e (8.13)
Substituting with the value of n, in Eq.8.13 gives

(Aslr .fysr /};, ) B34 cot H—Q

Replacing the value of 0, given by Eq. (8.8) in Eq. ( 8.14) gives:

4 = M,s
24, fryl7, ot

Ag fyst A

Age fyst/ Ts

Xcot [¢]

_Fig. 8.9 Forces in stirrups

8.5.4 Longitudinal Force

The shear-force Q, has been resolved into a diagonal compressive force D, and,
for equilibriuin, a tensile force N,=Q,cot 8. Because the shear flow is constant
along side 2, the force N, acts through the centroid of the side. Half of the
tension, N,/2, is resisted by each of the longitudinal bars at the top and the

bottom of the side wall. A similat resolution of forces occurs in each wall of the
space truss. The total longitudinal tension force equals:

~337

N=2(N1+N2) ....................... sermnesranesnaiaaeiaas (8.16)
N=2(Q, cot 0+ Q, cot ) eeereuirueriiacnannne (8.17)

Subsisting with the value of Q; and Q, from Eqgs. 8.7 and 8.8 gives

M, x M,y
N=2 ! i i i
(—2 7 cot 9+—~—2 ) €Ot B) evrvereennnn (8.18)
M, cotd
N:TZ (x,+y,) ............................... (8.19)
NZL P COth oreeneeeereccceeeceeereeeneeeecncnns (8.20)

where P, is the perimeter of the tube; P,=2(x;+y;)

Longitudinal reinforcement must be provided to resist the entire tension force N.

If it is assumed that this steel yields at failure, the required area of longitudinal
steel is given by:

s

‘24, 1,1y,

Photo 8.3 A box girder bridge during construction
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8.6 The Design for Torsion in the Egyptian Code
8.6.1 General

The ECP 203 torsion design procedure is based on the space truss model with
some simplifying assumptions. These assumptions are summarized as follows:

o The angle of inclination of the compression diagonals (which is the
angle of inclination of the cracks) is set _equal to 45°.

e Simple, but reasonably accurate, expressions are given for calculating
the thickness of the walls of the truss model, t., and the area enclosed
by the shear flow, A,.

e A limiting value for the allowed shear stresses developed due to
torsion is given to ensure prevention of crushing failure of concrete in
the struts.

In the ECP 203 torsion design procedure, the following three strength criteria
are considered: :

e First, a limitation on the shear stress developed due torsion is
established such that the stirrups and the longitudinal reinforcement
will yield before the crushing of the concrete struts.

e Second, closed stirrups are provided to resist the applied torsional
moment.

e Third, the longitudinal steel distributed around the peﬁmeter of the
stirrups should be adequate to resist the longitudinal force due to
* torsion. '

8.6.2 Calculation of the Shear Stress due to Torsion

The ECP 203 uses Eqg. 8.5, derived for a thin-walled section, to prediét the shear
stress due to torsion in hollow as well as in solid sections.

The ultimate shear stress developed due to the ultimate torque is given by:

M
= B ireveeeiriersaaeaesresisassarsnasanies 8.23
| T (8.23)

o e

For simplicity, the following expressions are suggested by the code for the area
enclosed by the shear flow path, 4,, and the equivalent thickness of the shear

flow zone, £,:

where
A,y 1s the gross area bounded by the centerline of the outermost closed
stirrups.
P, is equal to the perimeter of the stirrups.

The area 4, is shown in Fig. (8.10) for cross-sections of various shapes.

For hollow sections, the actual thickness of the walls of the section should be
used in Eq. 8.23 if it is less than ¢, . :

I

Opening

%

- )
. /Q//é

2

L

.

.

Ui

| |22

|

Closed
Stirrups

////////I//I//I/I///I//II///I
%

"//4/,,

7
7

s rrrrrrss

=

N\

7

Fig. 8.10 Definition of Ay,
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8.6.3 Consideration of Torsion

The Egyptian code ECP 203 requires that torsional moments should be
considered in design if the factored torsional stresses calculated from Eq. (8.23)
exceed g, , given by:

G =006 8 s (8.26)

8.6.4 Adequacy of the Concrete Cross-Section .

The concrete compression diagonals carry the diagonal forces necessary for the
equilibrium of the space truss model explained in Section 8.5. Preventing
crushing failure of the compression diagonals can be achieved either by limiting
the compressive stresses in the concrete struts or by limiting the maximum shear
stress. The ECP 203 limits the shear stress calculated by Eq. (8.23) to the value
given by:

o = 07 Lo <40 N /mm? oo 8.27)
B }/C ‘

Otherwise, the concrete dimensions of the cross-section must be increased.

8.6.5 Design of Torsional Reinforcement
8.6.5.1 Closed Stirrups

The ECP 203 uses Eq. (8.15) derived from the space truss model with the angle
6 set equal to 45°. Hence, the area of one branch of closed stirrups Agy is given
by: ‘

Ay =i (8.28)
24 (f”' J
s
In case of rectangular sections, Eq. (8.28) takes the form:
4 My:$ (8.29)

Y (x, .y,)(ﬁ"' ] '

s

where x; and y; are the shorter and the longer center-to-center dimensions of
closed stirrups.
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8.6.5.2 Longitudinal Reinforcement

The ECP 203 uses Eq. (8.22) derived from the space truss model with the angle
0 set equal to 45°. Hence, the area of longitudinal reinforcement 4 is given by:

A=t e rerreereene e naeteas
24
Vs

Substituting the value of M,, from Eq. (8.28), the area of the longitudinal
reinforcement can be expressed in terms of A, as follows:

where f; and f),, are the yield strength of the longitudinal reinforcement and the
yield strength of the stirrups, respectively.

The area of the longitudinal reinforcement should not be less than:

04 ’{—& Aq, y 1
A = __________7/0 - (._E'L) Ph (_).f’_]

slmin T fy / 2 s f).

where 4, is the area enclosed by outside perimeter of the section including
area of openings.

In the previous equation Aw should not be less than v
s Xf yur

8.6.6 Code Requirements for Reinforcement Amrangement

The Egyptian Code sets the following requirements with respect to arrangements
and detailing of reinforcement for torsion:

1- Stirrups must be closely spaced with maximum spacing (s) such
that
5§ < 200 mm

S which is less
4
2-.Only the outer two legs are proportional for torsion plus shear, and
the interior legs are proportional for vertical shear only.

3- Stlrrups proportioned for torsion must be closed as shown in Fig.
(8. 11)
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4-

Minimum bar diameter=12mm or s/15

. L —
<300 mm
|

Y

o

Fig. 8.11 Torsion stirrup and longitudinal reinforcement details

For box sections, transversal and longitudinal reinforcement arranged
along the outside and the inside perimeter of the section may be
considered effective in resisting torsion provided that the wall thickness
t,,is less or equal to b/6 where b is the shorter side length of the section. If

the wall thickness is thicker, torsion shall be resisted by reinforcement
arranged along the outside perimeter only.

It is permitted to neglect the effective part of the slab in T and L sections
when calculating the nominal shear stresses due to torsion.

The spacing of the longitudinal bars should not exceed 300 mm and
they should be uniformly distributed along the perimeter. At least
one bar must be placed in each corner of the section (i.e. in each
corner of stirrup). The minimum bar diameter shall be 12 mm or
1/15 of the spacing between stirrups whichever is larger.

Enough anchorage of longitudinal torsional reinforcement should
be provided at the face of the supporting columns, where torsional
moments are often reach maximum value.

8- In case of considering the effective part of the slab in T and L sections
when calculating the nominal shear stresses due to torsion, the following
measures are taken refer to Fig. (8.12 ):

- The effective part of the slab in T and L sections measured from the
outer face of the beam should not be more than 3 times the slab

thickness.
- The effective part of the slab should be provided with web
reinforcement. '
t,< 3 CL<3Yy t, < 3t

Bl T

Fig. 8.12 Effective flange width for torsion

Photo 8.4 A circular beam during construction
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8.6.7 Summary of Torsion Design According to ECP 203

Step 1: Determine cross-sectional parameters
A, = area enclosed by the centerline of the closed stirrups.

P, = Perimeter of the centerline of the closed stirrups.

Step 2: Calculate the shear stress due to the ultimate torsion

-— Mlu

ql‘l ZADte
A4,=0.85 4, t, =i41§h-
h

Note: If the actual thickness of the wall of the hollow section is less than
Ay [Py, then the actual wall thickness should be used.

Step 3: Check the need for considering torsion

A
Ve

If g, > 9, » ONE has to consider the shear stresses due to torsion.

- qlu min

Step 4: Check that section size is adequate

G e = 070 f——g“— <40 N /mm?
Y

If g, { Gsumax. the concrete dimensions of the section are adequate.

If 94, ) 91 max » ON€ has to increase concrete dimensions.

Step 5: Design the closed stirrups

The amount of closed stirrups required to resist the torsion is:

A _ M,.s

str T S A N
24, (&J
Vs |

Check that the provided area of stirrups is more than 4,, ,, =

24,24

str min

0.40'b s

strmin T f :
yst

Check that the provided spacing is less than the code requirement.
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Step 6: Design longitudinal reinforcement

_a(BY L
A:I —A:Ir(s j.f)m}

Check that the provided longitudinal reinforcement is not less than 4,,,,,

04 fle 4,
Aslmin = y‘ - (éﬂ_r) Ph LEL
fo v s S,

In the previous equation 4u should not be less than

b
s 6><fm

.

Photo 8.5 Guggenheim Museum, designed by Wright, New York, UsA
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Example 8.1
Design the T-beam shown in the figure below for torsion if it is subjected to a

torsional moment M, =12 kN.m
f, = 20 N/mm’?
fe = 280 N/mm £,=280 N/mm?

12 kN.m

600mm

t=100 mm

t

200 mm

Solution
To design a T-section for torsion, one has two options:

1- Consider the slab in the calculations and reinforce both the slab and the
beam for torsion

2- Do not consider the slab contribution in torsion design, and provide stirrups
and longltudmal reinforcement in the web only (easier and more practxcal
for thin slabs). .

In this example, the contribution of the slab shall be neglected (option 2) as
permitted by the code in section 4-2-3-2-b

S'rép 1: Section properties
Assume a concrete cover of 30 mm to the centerline of the stirrups.

=200 -2 x 30 = 140 mm
y1=600 -2 x 30 = 540 mm

347

The section properties for the design for torsion are 4, and p,

Py =2x(% +¥,) = 2x (140 + 540) = 1360 mm
A, = %, y, =140 % 540 = 75600 mm®

A, =0.854,, =0.85x75600 = 64260 mm’

A
t, =% =Z§—@=55.6mm
p, 1360

th
y1=540 mm

Step 2: Calculations of shear stress due to torsion

M, 12x10°
oM =1.68 N/mm?
Tu = 9% 4, xt,  2x64260x55.6 "

Grrmin = 0-06 —J;”- =0.06 20 =022 N/mm?
7. V1is

Since qu(1.68)>qumin (0-22), then torsion has to be considered

Step 3: Check the adequacy of the cross-section dimensions

=0.70 o <40N /mm?®
7e

Gy msx =070 1’1 s =2.56 N/mm?

Since qu(1.68) < qrumax(2.56), the cross section dimensions are adequate.

qfu Jnax
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Step 4: Reinforcement for torsion

A- Stirrups reinforcement
According to clause (4-2-3-5-b) in the code, the spacing of the stirrups should be

the smaller of

p/8 (170) mm or 200 mm, fry spacing of 150 mm

6
Ay = Muxs 12107 x150 =57.52 mm*
T 2x A, %X f, 1y, 2x64260x280/1.15

The area of one branch Ag=57.52 mm?, choose $10 (78 mm’)
Choose $10/150 mm

0.35 bxs =9ﬁb-xs =—§—;—6200x150=42.85 mm?

A:l min =
min T f 115 £,

The minimum area of steel for torsion is given by :
24,, 2 A, i (two branches)

Noting that Ay=0, thus 24,, >4

s¢,min

2x78>42.85 ok

B-Longitudinal Reinforcement

The area of the longitudinal steel is given by: (use calculated Agr)

4, =X P (£a). 57'52’“360(359):521.54 mm®
: s S 150 280 _

Calculate the minimum area for lohgitudinal reinforcement Ag min

04, [lea,
Ay in = Ye W_A”"Xp"]_rl"_
sl \min f). /}/s s f),
. . . . A, _ b
There is a condition on this equation that —*= 2 o
) s X yst

57.52 _ 200
—_ O X
150  6x280

AN

- [20
) _0.4 ’zeo()xsoo_57.52“360{2@)_198”2
sl-min 280/1.15 150 (280

Since Ag >Agmin ---0K

V.

-

\

The bar diameter chosen should be greater than 12mm or s/15(10mm)
Also, the maximum spacing between longitudinal steel should be less than 300 mm.

Choose 6¢12 (677 mm’)

¢ 10/150 mm

A' a2 "

Stirrup detail

72,_Aam

¢ 10/150 mm
<300 mm . )

Torsional reinforcement
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Example 8.2

The beam shown in figure is subjected to distributed torsional moment.of a
value of 18 kN.m' along its span. Design the beam for torsion considering the
contribution of the flanges.

Data

S = 30 N/mm’ ,

fee= 240 N/mm’, ;=360 N/mm

,LI 1000 mm |

800 mm

250 mm

1t

350 300 350

Solution

Step 1: Section properties
Assume concrete cover of 40 mm to the centerline of the stirrup all around the
cross section

//,

| .

o

A definition

P =170+ 550+ 350+ 220 + 350 + 550+ 170+ 920 = 3280 mm
or directly p, = 2x(720+920) =3280 mm

A,, =220%550+170x920 = 277400 mm”

A =0.854,, =0.85x 277400 = 235790 mm’

_ Ay _ 277400
" p, 3280

Step 2: Calculations of shear stress due to torsion

=84.6 mm

Critical section for torsion is at d/2

M. xL ¢ d
M, =1 "M (*+=
I 2 T( 2 2)
M, =287 _183(%2 1 875y _ag 15 kvm
2 2
M=18 KN.m/m’
critical section
for torsion
i
I : 'i
{ td/2=0.75/2 i
¢=09m — | : i
P i
P i
. P~ i
M,=48.15 I { !
i 1
i
i 163
Torsion Diagram ‘
M . 6
0 m 4815107y 91 N/ mm?

TOxA xt, 2x235790x84.6

qlu min 0.06 Iﬂ"‘ =0.06 E‘O‘ =027 1\//?)’1??’[2
' Ve V 1.5

Since qu(1.21)>Gumin (0.27) then torsion should be considered




Step 3: Check the adequacy of the cross-section dimensions

G =070 F—— <40N /mm?
.

Qoo e = 0-70 ,,13% =3.13N /mm?* <4.0ON | mm®

Quuymax=3-13 N/mm’

Since qu(l 21)<qumax(3-13), the cross section dimensions are adequate.

Step 4: Reinforcement for torsion
A- Stirrups reinforcement

According to clause (4-2-3-5-b) in the code, the spacing of the stirrups should be
smaller of py/8 (410) mm or 200 mm, {ry spacing of 200 mm

y 6
4 = M, xs _ 48.15%10 ><2Q() - 97.84 mm®
’ 2x A, % fru Vs 2x235790x240/1.15

The area of one branch Ay=97.84 mm’ choose $12 (113 mm?)
Choose $12/200 mm

04, = 9% 300%200 =100 mm?

4 5¢ mmin
_ f, 240

The minimum area of steel for torsion is given by:
2Aslr )cho:en z As!.min

2%113(226) > 100 ok

B-Longitudinal Reinforcement

The area of the longitudinal steel is given by:

Ay = A X Py Iﬂ = M(&) =1069.82 mm* (use the calculated Ag)
s S, 200 \360

Calculate the minimum area for longitudinal reinforcement Agmin

sf,min — fJ. /7,

Check —A—“’—z b > 300_
s 6xf 200 6x240

04 F—‘”—Ac, :
A -_ yc ! _Astrxph ,f)‘f'
s\,
97.84

0k

4, =300%550+250x1000 = 415000 rmm*

é//%

7
%22

30
0.4,/—— 41500
I 0 97.84x3280( 240 L0l
stoin =T 360/1.15 200 360, "

Since Ag ,<As|,min ...use Aslesl,min=1301 I'[ll’!'l2

The bar diameter chosen should be greater than 12mm or s/15(13.3 mm)

The maximum spacing between longitudinal steel should be less than 300 mm.
Choose 14¢14.

1414

<300 mm ‘

Torsional reinforcement details

$.12/200 mm

)

¢ 12/200 mm

\

Stirrup detail
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Example 8.3

the girder for torsion.
Data
fou = 25 N/mm’

fyse= 360 N/mm?’, ,=360 N/mm”

The figure shown below is for the cross section of a main giyder the}t is subjec'ted
to a factored torsional moment of a value of 850 kKN.m. It is required to design

1400 mm

200 mm

T

L

1200 mm

M=850 kN.m

200 mm

T

Solution

cross section

—

200 mm

Step 1: Section properties .
Assume concrete cover of 45 mm to the centerline of the stirrup all around the

1310 mm |

Ach

stirrups, <

p, =2(1310+1110) =4840 mm
4,, =1310x1110=1454100 mm*

A, =0.854,, =0.85x 1454100 =1235985 mm®

R A

te = ﬁ = M =300.4 mm >tactual (200 Imn)
4840

Py
Use te=tacna =200 mm

Step 2: Calculations of shear stress due to torsion

M, . 850x10°
2x A, xt, 2x1235985x%200

9o min = 0.06 f_cu =0.06 }—5‘ =0.24 N/mm2
’ N 7. \l 1.5 .

Since qu(1.72)>Guumin (0-24) then torsion should be considered.

=1.72 N/ mm*

9

Step 3: Check the adequacy of the cross-section dimensions

G e =0.70 Fﬂ <40N /mm®
Y

Qe =0.70 ’1355- =286 N /mm* <A.ON /mm?
Since qu(1.72)<qu max(2-86), , the cross section dimensions are adequate.

Step 4: Reinforcement for torsion
A- Stirrups reinforcement

According to clause (4-2-3-5-b) in the code, the spacing of the stirrups should be
smaller of: Py/8 (605) mm or 200 mm, try spacing of 200 mm

4o Myxs 850x10° x 200
2xA, % fo 1y, 2x1235985x360/1.15

=219.68 mm®

For box sections having a wall width less than b/6, the code permits dividing the
obtained area of stirrups between the two sides of the wall.

For the two vertical walls (webs) ¢, (200) < %

For the two horizontal walls (flanges) ¢,,(200) < 2699

Hence, area of the cross section of the stirrup on each side of the wall will be
equal to 219.68/2=109.8 mm’.

Thus choose $12/200 mm -
i.e. Ag=2x113=266 mm” >Agerequirea (219.68 mm’)




[
prcr
TR

Ay=2$12/200 mm

AS“’

\‘\

T AL2=(612/200)

Total area =2Aq

e
Aul2=012200) TN |

A

Ag i 04 s _o4 (2% 200)%200 =89 mm’*
o =7 360

4x112> Ay ya(89) Ok
Final design $12/200 mm

B-Longitudinal Reinforcement
The area of the longitudinal steel is given by:

4 _AuwxPy Syt =219.7x4840(§@_)=5316mm2
' s U/, 200  \360/

Calculate the minimum area for longitudinal rein

chosen Agy)

04 lea,
A, . = Ye ’ Aslrxph -L‘Ef_
sl .min fy /115 5

S

. There is a condition on this equation that

Aslr >

N

219.7 1400

2 .0k
200 6x360

4,, =1400x1200=1680000 mm?

The minimum area of steel for torsion is: 24, 2 4y mia

forcement Agjmin, (US€ the

b (code 4-2-3-5-¢)

yst

’////////////////////
_

/

/ //2///

LN

7

.

2\

e e

25
0.4, 1680000
4, =—3 219.7x4840(360) _ )
m 360/1.15 200 360, T mm

Since Ag >Agimin ---0.k

The bar diameter chosen should be greater than 12mm or s/15(13.3 mm)

Choose 36 @ 14(5541 mm”).

" JE ) L ] T 7
4 - o o
r 9 > “
A
\{ 14 d 36
¢ 12/200 mm
] ( )
g
£ g
S S
- =
¢ 12/200 mm
( Bl
| S—
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8.7 Combined Shear and Torsion

When a hollow section is subjected to a direct shear force and a torsional
moment, the shear stresses on one side of the cross section are additive and on
the other side are subtractive as shown in Figs. 8.13a.

When a solid section is subjected to combined shear and torsion, the shear
stresses due to shear are resisted by the entire section, while the shear stresses
due torsion are resisted by the idealized hollow section as shown in Fig. 8.13b.
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Shear stress ’ Shear stress Shear stress Shear stress
due to torsion due to shear due to torsion due to shear
a) Hollow section b) Solid section

Fig. 8.13 Addition of torsional and shear stresses

8.8 The Design for Shear and Torsion in ECP 203

8.8.1 Consideration of Torsion

The Egyptian code ECP 203 requires that torsional moments should be
considered in design if the factored torsional stresses calculated from Eq. (8.23)
exceed q,mn» given by:

S L (8.33)
Ve

4 1 min
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8.8.2 Adequacy of the Concrete Cross-Section

T-he shear stresses due to direct shear g, and due to torsional moment g, are
given by: ' "

g, ' M,
b,d Ky

w

q,=

The Egyptian‘Code concentrates on the side of the hollow section where the
shear and torsional stresses are additive. On that side:

g, + g, < 07 [F<40N /mm® s (8.34)

c

In a solid section, the shear stresses due to di

- section, irect shear are assumed to be
umforrqu 'dlstnbuted across the width of the section, while the torsional shears
only exist in the walls of the assumed thin-walled tube, as shown in Fig. (8.13b)

The direct surgma?ion of the two terms tends to be conservative and a root-
square summation is used

V@) +(q.) < 07 \/; SAON /mm® et (8.35)

?f. the above equation§ (8.34) and (8.35) are not satisfied, then one has to
increase the concrete dimensions of the cross section.
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8.8.3 Design of Transverse Reinforcement

For members under combined shear and torsion, the Egyptian Code requires that
the transverse steel due to torsion should be added to that due to shear. Concrete
is assumed to contribute to the shear strength of the beam. It does not, however,
contribute to the torsional strength of the beam. The transverse reinforcement for
combined shear and torsion is obtained according to Table (8.1).

Table (8.1) Transverse reinforcement requirements according to ECP 203

qp ) 0.06 \/fcu/}'c

gy <0.06 fcu/yc

gy < qcy | Provide minimum reinforcement | Provide reinforcement to resist

as given by Eq. 8.43 44, given by Eq. 8.28

4y Yo | Provide reinforcement to resist | Provide reinforcement to resist

‘Iu,_qcu/2 @y —eul? and gy

In Table (8.1), g, is the concrete contribution to . the shear strength and is
obtained from:

Geu =024\ feu 7 ¢ Nimm? e e raeeneas (8.36)

The total amount of stirrups needed for shear and torsion should satisfy the
following equation:

ST TT I WS LA O — (8.37)

min

yst

8.8.4 Design of Longitudinal Reinforcement.

Longitudinal steel for torsion should be obtained, using Eqgs. 8.31 and 8.32. No
longitudinal steel is required for shear. As mentioned before, the use of the
shifted bending moment diagram takes care of the additional tension force due
to shear. o
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8.8.5 Summary of the Design for Shear and Torsion

Step 1: Determine cross-sectional parameters

The cross-sectional parameters for combined shear and torsion design are b, d,
th and, Ph' -

Step 2: Calculate the ultimate shear stresses due to Q, and M;

_Gu
qu = bd
. Mtu
9 = 24,1,
A, =085 Ay, 1, = Aok
By

Note: If the actual thickness of the wall of the hollow section is less than
A,/ Py then the actual wall thickness should be used.

Step 3: Check the need for considering torsion

Calculate the minimum shear stress below which torsion can be neglected.

006 T
Ve

If ¢4, ) 9 min» We have to consider the shear stresses due to torsion

G 1 min

Step 4: Check that section size is adequate

To che‘:ck the adequacy of the concrete dimensions of the cross section, the
following equations must be satisfied:

For Hollow sections

q, +4q, <07 fﬂs4.0N/mm2
Ye

(9. +(g.)" < 07 F—y— <4.0 N /mm*

For solid sections
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If gm{dmmax 2094 9y dumax- the concrete dimensions of the section are

adequate.
If the above condition is not satisfied, one has to increase the dimensions.

Step 5: Design the closed stirrups

Calculate the concrete contribution to the shear resistance, g,

qc, =024 Jeuw
Ve

Check the requirements for transverse reinforcement from Table (8.1)
If ¢, ) geu» calculate the stirrups needed for shear

Asu =9u ~ 054y

fs_t' — sy b
s fystf?s
The area of one branch of stirrups needed for torsion is obtained from:
ASII‘ —_ Mtu

s LTAp(fyst!Vs).

The area of one branch of stirrups needed for resisting shear and torsion = 4 + Ay
n

where n is the number of branches determined from shear calculations as shown
in Fig. 8.14.

Check that the chosen area, of stirrups satisfies the minimum requirements

(A, + 244 ) ) 04 5 s

chosen f
st

‘T 1° R

A, +A4,14 . Ag + Ay 12

str

L N

Fig. 8.14 Stirrups for shear and torsion

Step 6: Design longitudinal reinforcement

Ag = Agty (%){%—}
yst

Check that the provided longitudinal torsional reinforcement is more than the
minimum requirement, where:

0do e A, o
Axlmin = L - (_S_”—) Ph &l
f,17 s 7

. !
In the previous equation == should not be less than
s

b
6 Xf)'SI

Fig. 8.5 High-rise building in Seattle, USA
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8.9 Compatibility Torsion

In statically indeterminate structures where the torsional moment results from
compatibility of deformations between members meeting at a joint, the torsional
moment can be reduced by redistribution of internal forces after cracking. The
ECP 203 assumes that in case of compatibility torsion, design can be based on
an ultimate torque equal to:

2
ACF
‘Pcp

M= 0316 =2 [fofp,  fu it NIMM i (8.44)

in which p,, is the perimeter of the gross concrete cross section

8.10 Torsional Rigidity

The torsional rigidity is defined as the torsional moment required to cause a unit
angle of twist.

For an uncracked elastic member, the theory of elasticity gives the torsional
rigidity as (C X G); where C is the torsional constant of the cross section and G
is the shear modulus of elasticity. At torsional cracking there is a sudden
increase in the angle of twist and hence a sudden drop in the effective value of
CG.

The Egyptian Code recommends the value of G to be equal to 0.42 E. where E,
-is the modulus of elasticity of concrete as given Chapter (1).

The ECP 203 gives the following equation for calculating the torsional constant
of rectangular sections:

in which
n= 0.7 for rectangular sections in which the shear stresses due to torsion do no

exceed 031641, /7. -

n= 0.2 for rectangular sections after cracking
B is a factor that depends on the ratio t/b as given in Table 8.2.

Table 8.2 Values of the factor ' g for calculating the torsional rigidity

b 1 15 2 3 | 5 | 08

B 0.14 0.2 023 0.26 029 | 033

365

For calculating the torsiqnal rigidity of a cross-section having T, L or box
shapes., one can divide the cross section into rectangles, each of short side x and
long side y and the value C will be given as ‘

The arrangement of rectangles that maximize the sum is used.
It. should be meptloned that the drastic drop in the torsional rigidity allows a
significant redistribution of torsion in indeterminate beam

nt systems
(compatibility torsion). g

Fig. 8.6 Petronas Towers, by Cesar Pell1, at Kuala Lumpur, Malaysia (1998}.
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Example 8.4

support:

M, = 42 kN.m (negative bending)
Q. = 1725 kN '
M, = 16.1 kN.m

material properties are:
£, =25N/mm’

fo = 280 N/mm’, £,=360 N/mm"

i
250 mm .
Solution
Step 1: Design stresses .
A. Shear Stress:
Q, _1725x1000 _ \op o

TWw=pxd  250x600

B. Torsional stresses

Assume concrete cover of 40 mm

x,=250-2 % 40 =170 mm
y;= 6502 x 40 =570 mm

Py =2%(x, +y,) = 2x(170+570) = 1480 mm
Ay =% Y = 170% 570 = 96900 mm’

4, =0.854,, =0.85x96900 = 82365 mm’

t=650mm

1

x,=170

The figure below gives the concrete dimensions for a cross section that is
subjected to the following straining actions at the critical section near the

It is required to perform a complete design for the cross section knowing that the

y1=570

367

A, 96900
1= = = 65.47
p, 1480 e

M, 161x10°
2x A, xt, 2x82365x65.47

{ ” {25
Qusin = 0.06 ’;— =0.06,[-— =0.2449 N/mm?

Since qu>qumin then torsion should be considered

Qu =1.49 N/mm?

Step 2: Check the adequacy of the cross-section dimensions
G =070 e 0705 - 2 |
e =070, 78 = .70, E—Z.SGN/mm <40 N imm’
@) +@) <
(1.15)" + (1.49)" =1.88 <2.86.....0.k

Since the previous equation is satisfied, the cross section dimensions are
adequate for resisting combined shear and torsion.

G

qm,max=2 .86

1'49 qmax=286

Qu
1.15
0.7425/1.5=2.86

Graphical representation of the maximum stresses due to shear and torsion
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Step 3: Design of closed stirrups for shear and torsion

Step 3.1: Area of stirrups for shear

The concrete shear strength qc, equals

9o = 0.241’% =098 N/mm’

Since the applied shear is greater than qeu, shear reinforcement is needed

4. =4, -%i = 1.15-0—'.;E =0.66 N/mm?
The spacing of the stirrups should be smaller of -

ph/8 (185) mm or 200 mm, try a spacing of 150 mm

g, xbxs _0.66x250x150
* T f, /115 280/1.15

=101.6 mm®
Area for one branch of the stirrup equals Ay/2=50.8 mm’
Step 3.2: Area of stirrups for torsion

The area of one branch Ay,
Using the same stirrup spacing of 150 mm, one gets

6
4, = M, xs _ 16.1x10° x150 - 60.2 mm?
2x A, % 7S 2x82365%280/1.15

A2
Area _of one branch

(A
N

Ager

Step 3.3: Stirrups for combined shear and torsion
Area of one branch for combined shear and torsion

| = Aget Ag/2=60.2 + 101.6/2 = 111 mm’
Choose ¢ 12 mm (113 mm®)

0.4 040
Ay min =——b x5 =——250x150=53.9 mm*
_ f’,s >80 x 53.9mm

Total area chosen=2x113> A, ........0k

Final design use ¢ 12/150 mm

Step 4: Design of longitudinal reinforcement for torsion

yt

Calculate the minimum area for longitudinal reinforcement Ag min

4, = A X2y | S | _ 60.2><1480(280
360

ekl N 2
. 150 ) 462 mm

040 e g
slmin — 7e i _A"’ X Py ('L'S'_
’ £, 17, s\,
There is a condition on this equation that A 2 b
s 6xf,,
60.2 o 250

150 ~ 6%280 "

.

-Acp'

L

N

Z

25
0.40,/—— 250%65
P 15 2307090 60.2x1480( 280
sl.min 360/1.15 150  \360

Since Ag> Agmin -..0k

)=385 mm®

Choose 612 (678 mm®)

240
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Step 5: Longitudinal reinforcement for flexure T

M,=42 kN.m

6
M, _ 42x10 ~0.0186

R= ) 2
f.bd 25%x250x 600

From (R-w) curve it can be determined that ©=0.0224

4 =oLebxd=00224 E%usomoo: 233 mm®

3

0.225
fClI b d =
=smaller of { f,

0.22356(;/5 x 250% 600 = 468 mm?*

A

5 min

134, =1.3x233=303mm*

but not less than%x 250x 600 = 225 mm® ——use (2P 14, 308 mm’)

Step 6: Reinforcement details

The maximum spacing between longitudinal torsional reinforcement is 300 mm. It
should be noted that the longitudinal torsional reinforcement that will be placed at the
top part of the section is added to flexural reinforcement as shown in the figure below.

$12/150 mm $12/150 mm
. 12715
2014 | o o e v | 2012+2014
i =3016
3 &« 6(1) 1 2 . > [ 2(D 1 2
/ . e o] 2012
Flexural Shear & torsion Flexure, shear & torsion
reinforcement reinforcement reinforcement
2A4HAG
4 12/150 mm
Stirrup detail
371

Example 8.5

The curved beam shown in figure has a width of 400 mm and a thickness of
800mm. The beam is subjected to uniformly distributed load. Computer
analysis' of the beam reveals that the maximum shear force and torsional
moment at the support A are .

Q, = 612 kN & M, =40 kN.m

f., =30 N/mm’

fos = 240 N/mm’, £,=400 N/mm’

Design the beam for shear and torsion

400 mm
]

t=800mm_

Solution X
Step 1: Shear and torsional stresses

Step 1.1: Shear Stresses

d=750 mm

_ O, _612x1000

g, = =2.04 N/mm*
bxd 400x750

Step 1.2: Torsional Stresses

Assume concrete cover of 40 mm to the centerline of the stirrup
X1 =400-2x40=320 mm

y1=800-2x40=720mm

Py =2%(x, +¥,) = 2x (320 +720) = 2080 mm

A, = x,. ¥, =320% 720 = 230400 mm’

A, =0.854,, =0.85x 230400 = 195840 mm>

! The beam was modeled using several frame elements. connected together to
approximate the curved shape using the computer program SAP 2000. The end support
was restrained against torsiorial rotation by fixing the support joint in 1-1 direction.
“This was achieved after rotating the local axis in the Z direction to coincide with slope
at both ends as shown in figure.
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; 20x10°
e =954 xt, 2x195840x1108

!f ’30 -
= Ja .06,/ — =027 Mpa
4 b, min 0.06 7. 15

Since quw(0.922)>qumin (0.27)then one has to design for torsion

=0.922 N/mnm’

Step 2: Check the adequacy of the cross-section dimensions

g.. =070 —‘-"’—=0.704/—?£=3.13N/mm2<4.0N/mm2
max }/{ 1'5 ‘

(qu )2 + (qm )2 < 9 e

J(2.04) +(0922)° =237 <3.13....0k

Since the previous equation is satisfied, the cross section dimensions are
adequate for resisting combined shear and torsion.

Qu

|

Quumax=3-13

0.922

T ) )qu

2.04
0.7+/30/1.5=3.13

Graphical representation of the maximum stresses
due to shear and torsion.

s

S O

Step 3: Design of closed stirrups for shear and torsion

Step 3.1: Area of stirrups for shear

The concrete shear strength g, equals

9. = 0.24‘f% =107 N/mm*

Since the applied shear is greater than q, shear reinforcement is needed

U q; =2.04 —% =1.505 N/mm’

The spacing of the stirrups should be smaller of
pr/8 (260) mm or 200 mm, try spacing of 100 mm

_ g, xbxs 1.505x400x100

st = =288.45 mm*
S 1115 240/1.15

Step 3.2: Area of stirrups for torsion
The area of one branch Ay,

_ M,xs _ 40x10°x100
2% A, % [ 1y, 2x195840x240/1.15

=48.93 mm*

Step 3.3: Stirrups for combined shear and torsion

According to the code (4-2-2-1-6-b), beams with width greater or equal to 400

| mm should be reinforced with stirrups having 4 branches. The four branches can

be used in shear design. However, only the outermost branches (exterior) can be
considered for torsion design.

The area of one branch =A./4 = 288 /4=72 mm®

Choose ¢10/ 100 mm (=76 mm” inside stirrup)

The area of the exterior stirrups (one branch)=Ag+ Agyexterion/2

= 48.93+72=121 mm’
Choose ¢ 14/100 mm (=154 mm’ outside stirrup)

/ A2

interior stirrup l Total area=2A+Ag

2AutAy/2

-exterior stirrup
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Check Asmin
Axt min =wb Xs =9'.:4_9' 400x100 = 66.67 ”1”'[2
e = 7f 240

A chosen —area of outside stirrup +area of the inside stirrup

=2x154+2x76=460mm* > A

st min oo

A4

'st.chosen
Step 4: Design of Longitudinal reinforcement

A=A xpif S =w(3‘9)=6m7 mm?
o s S 100 \400

Calculate the minimum area for longitudinal reinforcement Ag min

°p

0.40 j~=-A
A = Y _Aslrxph (&)
shamin =
117 s \J,

_b
6 Xf yst

There is a condition on this equation that Au s
N

4893 _ 400

2 ...0.
100 6x240

30
L 0.40,,5: 400800 _48.93x2080(240)_ oo,
sl min 400/1.15 100 400 |

Since Ay <Agmin ---US€ Agmin (1035 mm?)

Choose 12¢12 (1356 mm®)

[
S
/4
e 12012
¢ 14/100 mm
»
\. - J

\ ¢ 10/100 mm
Shear & torsion

reinforcement - Stirrup detail

Example 8.6

The box section shown in figure is subjected to combined shear and torsion.
Check the adequacy of the concrete dimensions and design both web and
longitudinal reinforcement.

Data

f. = 30 N/mm’

£y = 240 N/mm?, £,=400 N/mm’

1300 mm

Mu=315 kN.m

- 1100 mm

250 mm

i | .

250 mm

=590 kN

Solution
Step 1: Shear and Tobsional Stresses
Step 1.1: Shear Stresses

For calculating shear stresses, only the web width will be considered thus:

b=250+250=500mm

_ O, _590x1000

q, = =1.124 N/mm?
bxd 500x1050

Step 1.2: Torsional Stresses

Assume concrete cover of 45 mm to the centerline of the stirrup all around the
Cross section

e WA
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stirrups :

W
N

S
A\

p, =2(1210 +1010) = 4440 mm
A, =1210x1010=1222100 mm’
A4, =0.854,, =0.85x1222100 =1038785 mm’

4, 1222100

= 2440 =275.2 mm >teua(250 mm)
f

Use te=tacma=250 mm

Mq=315 kN.m

6
4. = M, __ 315x10 =0.606 N / mm®

2xA4,xt, 2x1038785%250

Dumin = 0.06 ‘f'-ci = 006 g-(—)‘ =0.27
' V7. G

Since qu(0.606)>qumin (0.27) then torsion can not be reglected

Step 2: Check the adequacy of the cross-section dimensions
For box section, use the following equations is applied

o =0.7+/30/15=3.13 <4 N /mm’

G ¥ 9y SGmax

0.606+1.124=1.73<3.13 .0k

Since the previous equation is satisfied, the cross section dimensions are
adequate for resisting combined shear and torsion.

Qu
3.13

qmax

0.606

45

Qu
1.124 \ 0.7+4/30/1.5 =3.13

Graphical representation of the interaction of the maximum stresses
due to shear and torsion for box sections

Step 3: Design of closed stirrups for shear and torsion

Step 3.1: Area of stirrups for shear

The concrete shear strength g, equals

o = 0.241’%95— =1.07 N/mm’

Since the applied shear (1.124)is greater than q,, (1.07)shear reinforcement is
needed

1.07
q,.,=f1u—"§' 1.124- —2—=059 N/ mm?

Assume spacing s=100 mm

_ga xbxs _0.59x500x100

» = =140.67 mm”
7,/115 240/1.15 mm

Since two stirrups is used and each one have two branches as shown in ﬁgure
Area required for shear for one branch of the stirrup equals Ag/4=35.17 mm’
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Step 3.2: Area of stirrups for torsion
The area of one branch A

315x10°x100  _ 2

M, xs 72.65 mm

A =——= =
XAy X [y Vs 2x1038785%240/1.15

For box section the code permits (4-2-3-5-b) the use of reinforcement along the
interior and exterior sides of each web if the wall thickness &, is less or equal
than the section width/6. ’

< £,(250) > E:—O- and

t,(250) > 13_6(29 only the external leg 1s considered in
calculations of torsional reinforcement as shown in the figure below.
Ay, for one branch =72.65 mm’

Step 3.3: Stirrups for combined shear and torsion

A-Flanges

The area of the stirrups is required for torsion only (one branch) =72.65 mm’
Thus choose ¢ 10/100 mm (78.5 mm?). ’

B-Webs

The area required for one branch of the exterior leg for shear and torsion = AgtAglt
=72.65+35.17=107.8 mm’

Thus choose $12/100 mm (/13 mm?)
The area required for one branch of the interior leg for shear = 35.17 mm’

$10/100 mm
v : flange
$12/100 mm /
web
AgtAgl2 Adlt ' ’ Total area =2Ag+Aq
ASU+ASt/4 \ /

CheCk Asmih

0.40 0.40
24, +A4,), =——bxs =—— 500x10
s st Jmin - 0 =83.33 2
Sy 240 mmn

Ay hosen =4%113 =452 mm” >83.33 ...... ok

Step 4: Design of Longitudinal reinforcement

4, = X Ps S | _ 72.65x4440( 240 _ ,
s f, 100 =1935mm

400
Calculate the minimum area for longitudinal reinforcement A
,min

Since the chosen stirrup is for combined shear and torsion, use the calculated A,
S
040 [reeqg .
A:l.min z—n___(égg_ x fiﬁ‘
A Us )P,

There is a condition on this equation that Ay b (code 4-2-3-5-c)
Ay

st

72.65< 1300 th
100~ 6x220 us use .

yst

A, =1300x1100 = 1430000 mm*

|
/ o

’30
0.40,[— x143000
- 1.5 100 1300

sl,min — 240
400/1.15 6x240

x4440x| — (=4 2
(400J 949 mm

Since Ag <Agmin US€ Agimin

20N




The bar diameter chosen should be greater than 12mm or s/15(6.67 mm)

Choose 36 ¢ 14(5541 mm?) such that the maximum spacing between
longitudinal steel is less than 300 mm.

— ¢ 10/100 mm

]

—
—

4414

¢ 12/100 mm

¢ 10/100 mm

14 ¢ 14
. o e ¢
4014
p o P o
L] L] L4
14 ¢ 14

(t JU

$ 12/100 mm

Note : Another alternative for stirrups arrangement is given below. Note also
that the internal stirrup is taken as ¢ 10/100 mm since it is only resist shear

stresses.

¢ 12/100 mm

¢ 10/100 mm \
$¢'10/100 mm
¢ 12/100 mm

Alternative stirrups detail

Example 8.7

The Figure below shows a box section that constitutes the cross-section of the
girder of a road-way bridge. Structural analysis of the bridge revealed that the
critical section of the girder near the support is subject to the following straining
actions: ‘

Q,= 6060 kN

M,=11700 kN.m

It is required to carryout a design for the combined shear and torsion for that
section. The material properties are as follows:

fou= 35 N/mm®

f,= 360 N/mm’

0221023

2.30
'1.85

335 l 1.40 I 1.40 ‘ 41335

2,00 o.50] 450 lo.50) 2.00




Solution

Step 1: Shear and Torsional Stresses
Step 1.1 Shear Stresses

The applie'd vertical shear force is resisted by the internal shear stre
developed in each web as shown in the following figure. e

QU2cosay | @ QU2 cos o)
o .
Q2 Q/(2 cos a) Q/(2 cos @) f ’ Qn

_9./2xcosax_ Q, /2
bxd/cosa  bxd

9.

Assu i
me a concrete cover of 80 mm to the centerline of the longitudinal reinforce

ment
d =2300-80 = 2220 mm '

g = 0, _ 6060/2x1000
Y bxd 700x% 2220

=195 N/mm?

Note: Since the angle a is relatively small, the horizontal

c
nodfected omponent can be

Step 1.2 Torsional Stresses

A
arzsuurgeiha concrete cover of 60 mm to the centerline of the transversal steel
around the cross section. As illustrated in the figure shown below

4, =218 i‘qﬁz—sﬂqog m?

Py =438+5.62+2.26x2=14.52 m

| Since quw>qumia then torsion can not be neglected

flange
5.62

Aolz

web

_\\\\

4.38

;o Au _10.9x1000
* T p, 1452

Since the effective thickness (Z, ) is less than both the web thickness and the
flange thickness, use the actual thickness.

=750 mm

Use te=tacrual

’ ’ 6
M, 11700x10 =0.902 N/ mm”

Dru(weby = 2XA0 xt, = 2X(085X109X106)X 700

The top flange is more critical because its thickness is smaller than the bottom
one. Thus the torsion stress in the slab (flange) equals

6
M, 11700x10 =295 N/ mm?

Tuwesy = )t 2% (0:85%10.9x10%) x 280

Gremin = 0-06 S _ 0.06#5 =0.29 N/ mm*
’ . 1.5

Step 2: Check the adequacy of the cross-section dimensions

It should be noted that the flanges of the box-section (the top and bottom
flanges) are subjected to shear stresses due to torsion only, while the webs are
subjected to shear stresses due to combined shear and torsion.

383

384



For the flanges (top or bottom flanges)

The top flange is m iti
ore crit i 3 . ‘
one ical because its thickness is smaller than the bott
. ottom !

qu,max=0'70 = =0 ‘ AE_
‘ f}’c . .70><J1,.5—3.38N/m_mZ <4 N /mm*

q max 3.38 N /mn’l
- .
| n.

G ¥y Sy $338 N {mm?

0902+1.95=2.85<338 .0k

Since g, <
a .
: u < Qumax@Nd Gu <Geu max , the cross-section dimensions are ade
. quate

Gy
qtu.max=3. 3 8
0.7+/35/1.5 =338
0.902
1.95 © 3.38 qQu

Graphi i i
p‘ cal representation of the interaction of the maximum stresses

d .
ue to shear and torsion for box sections
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step 3: Design of closed stirrups for shear and torsion
step 3.1: Area of stirrups for shear

The concrete shear strength g, equals

g, =024 %5; =1.16 N/mm*

Since the applied shear is greater than Qeu, stirrups for shear are needed

b 1.16

= =195———=137 N/ mm®
qsl‘ qll 2 2

Assume spacing s=100 mm

The area of stirrups for the two webs equals

g, xbxs _ 1.37x(2%700)x100 —612 mm”

4 = =
u f’, /1.15 360/1.15

| For one web = 612/2=306 mm’

Area of one branch=305.9/2=153 mm2

Step 3.2: Area of stirrups for torsion

M, xs : 11700%10° x100

A, =___—————=_,_———e——6————-——=201mm2
In A, % [ 17, 2x(0.85x109%10 Yx360/1.15

For box section the code permi.ts (4-2-3-5-b) the use of reinforcement along the
interior and exterior sides of each web if the wall thickness £, is less or equal
than the section width/6.

(4.5 +5.75)x1000/2
e
The area of the stirrups for torsion can be divided on the two sides.

Area of one branch Agr=201/2 =100.5 mm”

bav
2 1,(700) <=2 <

Step 3.3: Stirrups for combined shear and torsion

A-Flanges

The area of the stirrups is required for torsion only (one branch) =153 mm’

Thus choose ® 14/100 mm (154 mm?). The top flange is subjected to direct live |
load that causes other straining action in the transverse detraction. The designer
should be aware that the chosen reinforcement for torsion might be increased to

take care of the additional stresses due to other straining actions.

e
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There is a condition on this equation that (codg 4-2-3-5-¢)

B-Webs
Area required for shear and torsion for one branch = A +tA=100.5+153=253.5 mm’

Thus choose ¢ 18/100 mm (254 mm?)

yst

) b
201 < 0.5(4500 + 5750) thus use —=—
100 7x360/1.15 6xf

Check Ay mia (for the two wébs)

24, +A4, )mi" =—(—)—'@b XS =9ﬁ9
7, 360

’35
22 7500
0.4 = 11787501 _0,5(4500+5750)><1 4‘52“000(%):38304.04 mm’

A, .=
(2x700)x100 =156 mm* s i 360/1.15 6x360

Since Ag <Agmin US€ Asgimin

A =4x254 =1016 mm’ >156 ....ok

st chosen

The bar diameter chosen should be greater than 12mm
Check Ag min (for the two fla : . s .
somin nges) Choose 124 @ 20 such that the maximum spacing between longitudinal steel is

less than 300 mm. Reinforcement details for the cross section are shown in Fig

EX 8.7.

24, +A,) . J040, 040 (280 +300)x100 = 64.4 mm*
f, 360

R T T IR L A KT BV AT

T

A =4x154 =616 mm® >64.84 ..ok

st.chosen

Final design two stirrups $18/100 mm (two branches) in the webs and two
stirrups ¢14/100 mm (two branches) in the flanges

Step 4 Design of Longitudinal reinforcement

S = 29286 mm®
s S, 100 360)

Calculate the minimum area for longitudinal reinforcement Agmin(code Eq. 4-
53-b). Since the chosen stirrup is for combined shear and torsion, use the
calculated A,

4 A XDy (_f,_]: 201x14'.52x1000(@

0.4 FiAq, ) .
A _ Ve __(_g_,:_)xp ( ys:J

sl min fy / 7, s h f).

4, =2300 %;—‘15—09 =11787500 mm® £h
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10g 14/m'
10g 14/m’

_ |10¢’14/n}' \[ 124420

Note: Longitudinal flexural reinforcement is not shown

10 #14/m’
10 g14/m’

10 #14/m'

not a torsional rit|

10 #14/m’

10#18/m’

Reinforcement details

-

not a torsional rft,

10on

APPENDIX A

Design Charts for Sections
Subjected to Flexure



Area of Steel Bars in cm 2 (used in Egypt) . 2
Area of Steel Bars in mm (used in Egypt)

@ |Weight

Cross sectional area (cmz)
mm | kg/m’ 1 2 3 4 5 6 7 8 9 10

o }Weight Cross sectional area (mmz)
1 2 3 4 5 6 1 7 8 9 | 10} 1112
56.5 | 84.8 | 113 | 141 170 | 198 | 226 | 254 283 | 311} 339
251 | 302 | 352 | 402 452 | 503 | 553 | 603
471 | 550 | 628 | 707 785 | 864 | 942
1018 | 1131 1244} 1357

mm § kg/m'
6 ] 0.222] 283
g {0395 503 101 j 151 201

10 | 0617 | 785 | 157 | 236 314 | 393
12 Y o.888 | 113 | 226 | 339 452 | 565 | 679 | 792 | 905
14 | 1.208 | 154 | 308 | 462 616 | 770 | 924 | 1078} 1232 1385

1578 | 201 | 402 | 603 | 804 1005 | 1206 | 1407 | 1608 1810 2011|2212 2413

254 | 500 | 763 | 1018} 12721 527 | 1781 | 2036 | 2290 | 2545 2799 | 3054

942 | 1257 | 1571 1885] 2199 2513 | 2827 | 3142 | 3456 | 3770}

1521 | 1901 | 2281 | 2661 | 3041 3421 | 3801 | 4181 4562

6 0.222 |1 0.28 1 0.57 ] 0.85 | 113 | 1.41 | 1.70 | 1.98 | 2.26 | 2.54 | 2.83
8 0.395 | 0.50 } 1.01 | 1.51 | 2.01 | 2,51} 3.02 | 3.52 | 4.02 | 4.52 | 5.03
10 | 0617 | 0.79 | 1.57 { 2.36 | 3.14 | 3.93 | 4.71 | 5.50 | 6.28 7.67 7.85
12 10888 | 113|226 | 3.39| 452 565|679 7.92] 9.05 |10.18]11.31
14 | 1.208 | 1.54 | 3.08 | 462 | 6.16 | 7.70 | 9.24 {1 10.78]12.32] 13.85] 15.39
16 | 1.578 | 2.01 | 4.02 | 6.03 | 8.04 {10.05]|12.06]14.07]16.08] 18.10 20.11‘
18 | 1.998 | 2.54 | 5.09 | 7.63 [10.18|12.72]15.27{17.81] 20.36| 22.90| 25.45
20 | 2466 | 3.14 | 6.28 | 9.42 | 12.57|15.71|18.85] 21.99| 25.13| 28.27| 31.42
22 12984 | 3.80 | 7.60 | 11.40]15.21] 19.01] 22.81] 26.61 | 30.41] 34.21| 38.01
25 | 3.853 | 4.91 | 9.82 1 14.73] 19.63| 24.54] 29.45| 34.36 39.27 | 44.18] 49.09
28 | 4.834 | 6.16 | 12.32)18.47} 24.63| 30.79| 36.95] 43.10] 49.26 | 55.42| 61.58

1539 | 1693 | 1847

18 | 1.998
20 | 2.466 | 314 | 628

22 § 2984 | 380 | 760 | 1140
25 § 3.853 | 491 | 982 1473 | 1963 | 2454 | 2945 | 3436 3927 | 4418 | 4909 | 5400 5890

28 | 4.834 | 616 | 1232 1847 2463 | 3079 | 3695 | 4310 | 4926 5542 | 6158 | 6773} 7389

32 | 6.313 | 804 | 1608|2413 3217 | 4021 | 4825 | 5630 | 6434 7238 | 8042 | 8847 | 9651
38 | 8.903 | 1134} 2268 3402 | 4536 | 5671 ] 6805 | 7939 9073 {10207{11341 12475{13609)

Area of Other Steei Bars in cm 2 |
Area of Other Steel Bars in mm 2

@ [Weight

. Cross sectional area (cmz)
mm /m'
g/m 1 2 3 4 5 6 7 8 9 10 11 12

6 0.222 | 0.
0.28 | 0.57 1 0.85 | 1.13 | 141 [ 1.70 | 198 | 2.26 | 2.54 | 2.83 | 3.11 | 3.39

@ |Weight| Cross sectional area (mmz)
4 5 6 7 8 9 10 11 12

226 | 254 | 283 | 311 339
503 | 553 | 603
864 | 942

mm | kg/m' 1 2 3
6 | 0.222] 28.3| 565 84.8 113.4]141.4] 170 | 198
8 | 0.395 | 50.3 {1005 151 201 | 251 | 302 | 352 ] 402 452
0617 ] 79 | 157 | 236 314 | 393 | 471 | 550 | 628 707 | 785
265 | 308 | 531 | 664 | 796 929 | 1062 1195 1327 1460 | 1593
603 | 804 | 1005] 12086 j 1407 1608 | 1810] 2011 | 2212 2413
1418 | 1701 | 1985 | 2268 | 2552 2835 | 3119 | 3402
2661 | 3041 ] 3421 3801 4181 | 4562
3927 | 4418 | 4909 | 5400 5890
5542 | 6158 | 6773 7389
8042 | 8847 | 9651

8 0.395 | 0.
- 0.50 | 1.01 | 1.51 | 2.01 | 2.51 | 3.02 | 3.52 | 4.02 | 452 5.03 ] 6,53 ] 6.03
.617 | 0.79 | 1.57 | 2.36 | 3.14 | 3.93 | 4.71 | 550 | 6.28 | 7.07 | 7.85 | 8.64 | 9.42

AT

:: :::2 133|265 3.98] 5.31] 6.64 | 7.96 | 9.29 {10.62} 11.95[13.27}|14.60}15.93
= 2.22: 22: 4.02 | 6.03 | 8.04 | 10.05|12.06] 14.07] 16.08| 18.10] 20.11| 22.12} 24.13
2_2 = 3:80 ::Z 1!:.210 :;:1 :::: 17.01{19.85] 22.68| 25.52] 28.35| 31.19| 34.02 a
e e . .01122.81126.61}30.41] 34.21| 38.01} 41.81]|45.62 :
- 14.73]19.63| 24.54| 29.45| 34.36| 39.27 | 44.18| 49.09 | 54.00{ 58.90
= -834 | 6.16 {12.32]18.47 ] 24.63}| 30.79 36.95] 43.10| 49.26 | 55.42| 61.58] 67.73| 73.89

6.313 | 8.04 | 16.08]24.13|32.17]40.21|48.25| 56.301 64.34| 72.38]| 80.42| 88.47 96-5

13 | 1.042 | 133
16 | 1.578 | 201 | 402
19 | 2.226 | 284 ‘567 | 851 | 1134
22 | 2984 | 380 | 760 1140 | 1521 | 1901 | 2281
25 | 3.853 | 491 | 982 |1 473 | 1963 | 2454 | 2945 3436
28 | 4834 | 616 | 1232} 1 847 | 2463 ] 3079 | 3695 | 4310 4926

e

6.313 | 804 | 1608 | 2413 3217 | 4021 | 4825 | 5630 6434 | 7238
2268 | 3402 | 4536 | 5671 6805 793§ 0073 |10207]11341|12475 13609

38 |8.903 [ 11.
34122.6834.02] 45.36 56.71} 68.05} 79.39{ 90.73| 102.1| 113.4] 124.8] 136.1 2
38 | 8.903 | 1134

A

sots

101 .
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Ghoneim & El-Mihilmy

Design of Reinforced Concrete Structure
S

Ghoneim & El-Mihilmy

Design of Reinforced Concrete Structures

Design Tables for Sections Subjected to Simple Bending (R-p)
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P M, 1 (%) values for fy=240 Nfmm* , M, (%) values for fy=360 N/mm”
v pd? fcu=40‘ f,=35 ‘ =30 l =25 ‘ feu=20 “ T pd?| =40 | 1,735 | £o.=30 | f=25 =20
0.46 015 ] 0.45 | 015 ] 015 | 0.15

0.5 0251 025 | 025 | 025 | 025 0.5 016 1 016 ] 016 | 0.16 | 0.16
0.6 029 | 029 | 029 | 030 | 0.30 0.8 049 | 020 | 020 | 0.20 { 0.20
0.7 034 ] 034 ] 034 ] 035 | 035 - 07 023 | 0231 0231 023 023
0.8 039 | 0.39 | 040 | 040 | 040 0.8 026 | 026 | 0.26 | 0.27 | 027
0.9 0.44 0.44 0.45 0.45 0.46 0.9 0.30 0.30 0.30 0.30 0.30
1.0 049 | 050 | 050 | 050 | 0.51 1.0 033 | 033 | 033 | 034 | 034
1.1 054 | 055 | 055 | 056 | 056 1.1 036 | 036 | 037 | 037 | 0.38
1.2 060 | 060 | 0.60 | 0.61 { 062 1.2 040 { 040 | 040 { 041 | 041
13 065 ] 065 | 066 | 066 | 0.68 1.3 043 | 043 | 044 | 044 | 045
1.4 070 | 070 } 071 { 0.72 ] 0.73 1.4 047 | 047 | 047 | 048 | 049
1.5 075 | 076 | 076 | 0.77 | 0.79 1.5 050 | 050 | 051 | 052 | 053
1.6 080 | 081 | 0.82 ! 083 | 0.85 1.6 054 | 054 | 055 | 055 | 057
1.7 0.86 0.86 0.87 0.89 0.91 1.7 0.57 0.58 0.58 0.59 0.61
1.8 0.91 0.92 |. 0.93 0.95 0.97 1.8 0.61 0.61 0.62 0.63 0.65
1.9 096 | 097 ] 0.99 | 1.00 | 1.04 1.9 064 | 065 ] 066 | 067 | 069
2.0 102 | 103 ] 104 | 1.06 § 1.10 2.0 068 | 069 | 070 | 071 | 0.73
2.1 107 | 1.08 | 110 | 112 | 1.16 2.1 072 ] 072 ] 073 | 075 | 0.78
22 113 | 114 | 116 ] 119 ]| 1.23 2.2 0751 076 | 077 | 079 | 0.82
2.3 148 | 120 | 122 ] 125 | 1.30 23 079 ] 0.80 | 0.81 | 0.83 | 0.87
2.4 124 | 126 | 128 | 1.31 | 1.37 24 083 | 084 | 085 | 0.87 | 091
25 130 | 131 | 134 | 137 § 144 25 086 | 0.88 | 0.89 | 0.92 | 0.96
26 135 | 137 | 140 | 144 | 151 2.6 090 | 091 | 093 | 096 | 101
27 141 | 143 | 146 | 151 | 159 2.7 094 | 095 | 097 | 1.00

2.8 147 | 149 | 152 1 157 | 167 2.8 098 | 099 { 1.01 { 1.05

29 153 1 155 | 159 | 164 29 1.02 1 103 ] 1.06 | 1.09

3.0 158 | 161 ] 165 | 1.71 3.0 106 | 1.07 | 110 | 1.14

3.1 164 | 167 { 1.71 | 1.78 3.1 1.10 § 1.1 1.14 | 119

3.2 170 | 173 | 1.78 | 1.85 3.2 144 ] 116 | 119 | 1.24

3.3 176 | 1.80 { 1.85 | 1.93 33 148 § 120 | 123 | 1.29

34 182 ] 186 | 191 | 2.00 34 122 | 1.24 | 1.28

35 1.88 | 1.92 | 1.98 |- 2.08 35 126 | 1.28 | '1.32

3.6 195 | 199 | 205 | 2.16 3.6 1.30 | 1.33 | 1.37

3.7 2.01 | 205 | 212 3.7 1.34 | 137 | 142

3.8 207 { 212 | 2.20 3.8 138 | 141 | 146

3.9 2143 1 219 | 227 3.9 142 | 146 | 1.51

4.0 220 | 226 | 2.34 4.0 1.47 | 1.50 :

4.1 226 | 2.33 | 242 4.1 1.51 1.55

4.2 233 | 240 | 2.50 4.2 1556 | 1.60

4.3 240 | 247 | 2.58 4.3 1.60 | 1.64

4.4 246 | 2.54 44 1.64 | 1.69

4.5 253 | 261 4.5 169 | 1.74

4.6 260 | 2.69 4.6 173 | 1.79

47 267 | 2.76 4.7 1.78

4.8 274 | 284 4.8 1.83

49 281 1 2.92 49 1.87

5.0 2.88 | 2.99 5.0 1.92

5.1 2.95 5.1 1.97

5.2 3.03 517 2.00

gi glg 1. Assume u =0.5-1%

5:5 - 3: > 2. Determine R from the table

56 333 3. Compute d then compute Ag

57 3.41
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Design i
gn of Reinforced Concrete Structures Ghoneim & El-Mihilmy

Design Tables for secti . DESIGN TABLES FOR SECTIONS SUBJECTED TO BENDING(Ku- u)
ions subjected to simple bending(R-y) K, values for ,-240 Nimm’ n K, values for £,=360 N/mm®
' 0,
= l 11 (%) values for fy=280 Nimm? M % * ( 9 =20 | f.,=25° £,,=30 | f,=35 f.,=40 w08 f,=20 | f,=25 £.,=30 | f.,735 =40
“ 7 hdY =40 | 1,=35 | £,=30| f.,=25 ] £,=20 R, =—% p%) values for fy=400 Nimm” ] 015 | 1479 | 1475 | 1472 | 1470 | 1469
d bd?| 1040 | 15,235 | 1,230 | £,=25 | 1,,=20 : 020 | 1287 | 1282 | 1279 | 1277 | 1.275
0.6 0.25 0.5 0.15 | 0.15 | 0. — 025 | 1405 | 1401 | 1398 | 1396 | 1395 025 | 1456 | 1.451 | 1.147 | 1145 | 1143
0.7 0.29 g;g gigg ggg g‘ig 0.6 0.18 | 0.18 0.:2 8112 8 :g _0.30 | 1287 1282 | 1279 | 1277 | 1.275 030 | 1060 | 1054 | 1050 | 1.048 | 1.046
0.8 0.34 | 034 | 034 | 034 | 034 0.7 021 1 021 | 021 | 021 | 0.1 035 | 1195 | 1.490 | 1.186 | 1.184 | 1162 035 | oese | o980 | oo7e | 0973 | 0.970
0.9 038 | 038 | 0.38 | 0.39 | 0.39 0.8 024 | 024 | 024 | 0.24 | 024 040 | 1421 | 1116 | 1112 | 1.109 | 1.108 040 | 0s27 | 0920 | 0915 | 0.912 | 0.910
1.0 042 | 042 | 043 | 0.43 | 044 9:9 027 1 027 | 027 | 0.27 | 027 045 | 1.060 | 1.054 | 1.050 | 1.048 | 1046 045 | 0878 | 0870 | 0866 | 0.862 | 0.860
1.1 047 | 0.47 | 047 | 048 | 048 1.0 030 | 0.30 | 030 | 030 | 0.31 050 | 1009 | 1003 | 0999 | 0096 | 0894 050 | 0837 | 0829 | 0824 | 0.820 | 0817
1.2 051 | 051 | 052 | 052 | 053 1.1 033 | 033 1 0331 033 | 034 055 | 0965 | 0958 | 0954 | 0.951 | 0.949 555 | 0802 | 0793 | 0788 | 0.784 | 0.781
1.3 0.55 | 056 | 0.56 | 057 | 0.58 ::23 036 § 036 | 0.36 | 037 | 037 060 | 0027 | 0920 | 0915 | 0912 | 0910 060 | 0771 | o762 | 0757 | 0753 § 0.750
}g 8‘22 060 | 061 | 062 | 0.63 1:4 g.jg g‘ig 0.39 | 040 | 041 065 | o893 | 0886 | 0881 | 0878 0.875 065 ] 0745 | 0735 | 0.729 § 0725 0.722
= 055 g.gg 066 | 0.66 | 0.68 15 0.45 | 645 3'33 043 | 044 070 | 0863 | 0856 | 0.851.1 0847 | 0.845 070 | 0721 | 0714 0705 | 0701 | 0697
> 07T ons g.;o 0.71 | 0.73 1.6 0.48 | 049 0'42 8‘46 0.48 075 | 0837 | 0829 | 0824 | 0820 | 0.817 575 | 0700 | 0.690 | 0.683 | 0.679 | 0.675
18 075 T 670 0.8(5) g.?s 0.78 1.7 051 | 052 | 052 O'Zg 0.51 080 | 0813 | 0805 | 0799 | 0795 | 0.793 080 | 0681 | o671 | 0664 | 0.659 | 0855
19 063 | 083 | 068 o‘g:; 0.83 1.8 055 | 055 | 056 | 057 o5 085 | o7ot | 0783 | 0777 | 0773 | 0.770 0.85 | 0665 | 0653 | 0646 | 0641 | 0637
5.0 087 T 086 085 TG0 0.89 1.9 0.58 | 0.58 | 059 | 0.60 g 58 090 | 0771 | 0762 | 0757 | 0753 | 0.750 000 | o649 | 0637 | 0630 | 0625 | 0.621
21 1082 [ 055 o4 T 000 (1).94 2.0 061 | 062 | 063 ] 064 052 095 | 0753 | 0744 | 0738 | 0.734 | 0.731 095 | 0635 | 0623 | 0615 | 0610 | 0606
2.2 097 | 0.98 | 098 | 702 00 2.1 0.64 | 065 | 066 | 0.67 % 100 1. 0737 | 0727 | 0721 | 0747 | 07138 1.00 | 0622 | 0610 | 0601 0596 | 0.592
23 | 101 [ 103 | 1.04 | 107 1'06 22 | 068 | 068 | 070 | 071 470 105 | o721 | 0711 | 0705 | 0701 | 0697 1.05 0507 | 0.589 | 0.583 | 0.579
24 1.06 | 1.08 | 1.00 | 112 1'11 23 071 | 072 | 073 [ 075 g T4 540 | o707 | 0697 | 0.690 | 0.686 | 0682 1,10 0.586 | 0.577 | 0571 | 0567
5.5 111 ] 133 | 115 | 148 1'2; 24 0.74 | 075 | 077 | 079 o gg 115 | 0694 | 0683 | 0676 | 0672 | 0.668 115 0575 | 0.566 | 0560 | 0.556
2.$ 1.;6 T8 | 120 | 123 ] 1.30 'jg 078 | 0.79 | 080 | 0.82 1 088 120 | oes1 | 0671 | 0664 | 0659 | 0655 1.20 0566 | 0.556 | 0.550 | 0.545
2 ! .2; 123 | 125 | 120 736 23 8.81 0.82 | 084 | 085 125 ) 0670 | 0659 | 0.652 | 0647 | 0643 1.25 [Toss7 | 0547 | 0540 0.536
59 5 } .ga 1.30 | 135 58 o.gg 086 | 0.88 | 0.90 130 | 0659 | 0648 | 0640 | 0635 | 0632 1.30 0.538 | 0.532 | 0.527
30 R '32 1.36 | 141 2.9 0.02 g'gg 091 | 094 135 | 0649 | 0637 | 0630 | 0625 | 0621 1.35 T os30 | 0523 ] 0518
31 FREY 11‘41 147 3.0 0.95 | 0.97 0.95 | 0.98 140 ] 0640 | 0628 | 0620 | 0814 1 0611 1.40 0522 | 0515 | 0510
32 146 T3 ~49 : gg 1.53 3.1 0.99 | 1 ‘00 0.99 | 1.03 145 | 0631 | 0618 | 0610 | 0.605 | 0.601 1.45 -} 0.515 | 0.508 | 0.502
33 151 154 53 1.59 32 105 1o }-03 1.07 150 | 0622 | 0610 | 0601 | 0596 | 0.592 1.50 0.508 | 0501 | 0.495
34 156 | 159 o 1.65 BER To6 1708 1-?: 1.11 155 | 0614 | 0.601 0.593 | 0.587 | 0.583 1,55 ) 0.494 | 0.488
35 GARCERL B! 1.72 34 100 | 112 111 3 160 | 0607 | 0593 | 0585 | 0579 | 0.575 1.60 | o488 | 0.482
36 167 1 170 | 176 35 KEN EECREED 165 | 0600 | 0586 | 0577 | 0571 | 0567 1.65 0.482 | 0476
37 172 76 183 35 17 (13 Ti23 170 | 0593 | 0579 | 0570 | 0564 | 0559 1.70 ’ 0.476 | 0.470
38 | 178 | 182 1 188 37 | 1211 123 | 197 1.75 0572 | 0563 | 0557 | 0552 1.75 0470 | 0.464
39 183 | 188 | 705 38 124 {127 | 13 1.80 0.566 | 0.556 | 0.550 | 0.545 1.80 . 0.459
:_'? 1'22 193 [ 201 1 2'8 158 | 131 : 1.85 0.560 | 0.550 | 0.544 | 0.539 1.85 0.454
5 o 199 | 2.08 : v 1 132 | 135 1.90 . 0.554 | 0544 1 0537 | 0.533 1.90 . 0.448
o {200 2.05 a1 1.36 | 1.40 1.95 0.548 | 0538 | 0.532 | 0.527 1.95 0.444
4 T 211 = 140 | 144 2.00 0543 | 0533 | 0526 0.521 2.00 0.440
24 241 2.18 _ _ 42 144 | 148 210 0533 | 0522 | 0515 | 0.510 o
- 2.23 2.24 ) : 4-5 148 | 152 220 | -} 0513 | 0505 | 0500
: 2.30 : 1.52 2.30 0.504 | 0.496 | 0.491
47 229 | 2.37 4.6 1.56 - 2.
a8 R Y 37 Too 2:40 0.496 | 0488 | 0.482 ‘
29 : : 2.50 0.488 | 0.480 | 0.474 : o
2.41 438 164 ) {4, =L bxd+ £ 560 1-Assume  (0.5-1%)
g? ;gg gg 1.69 100 S, /115 2'_70 g’:g 3':22 2-From thg table determine K,
52 5551 : As;um 1(-)73 .80 0.459 0.452 3-Determine the beam depth d
53 |3 4oty P - e 1 =0.5-1% - 2.90 0453 | 0.446 '
54 25‘2 * =100 bxd +m 2. Determine R, from the table 3.00 0447 0440 | H d=K _Af[_u_ A, =£ b4 :t——l—J"——
=5 E ) oL 3. Compute d then compute As 3.10 - 0.434 "V b TI00 - f 17,
3.20 0.429
3.30 - o424
3.40 - - {0419
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Ghoneim & Ei-Mihilmy

D~ESIGN TABLES FOR SECTIONS SUBJECTED TO BENDING (Ku- ) FORCED SECTIONS
. K, values for f,=280 N/mm® . K, values for f,=400 N/mm? 5 DESIGN CHART FOR DOUBLY REIN o
1) 1720 | £o4=25 | .,=30 | £..=35 | f..=40 1 (%) f0=20 | 1,25 | £.,730 | £.,=35 | f_=40 SUBEJCED TO SIMPLE BENDING.
0.15 | 1405 | 1401 | 1.398 | 1396 | 7395 All types of steel (table 4-1). d"/d=0.05
020 | 1223 | 1218 | 1215 | 1.213 | 1.911
025 | 1304 | 1300 | 1297 | 1.204 | 1.203 025 | 1.099 | 1.094 | 1090 | 1.088 | 1.086
030 | 1195 | 1190 | 1.186 | 1.184 | 1.182 0.30 | 1.009 | 1.003 | 0999 | 0.996 | 0.994 Rl= M,
035 | 1.110 | 1.105 | 1.101 | 1.098 | 1.006 0.35 | 0939 | 0932 | 0928 | 0.925 | 0.922 Jubd
040 | 1.042 | 1.036 | 1.032 | 1.029 | 1.027 040 | 0883 | 0876 | 0.871 | 0.867 | 0.865
045 | o986 | 0980 | 0976 | 0.973 | 0.970 045 | 0837 | 0.829 | 0.824 | 0.820 | 0.817 0.38 1 11
050 | 0939 | 0932 | 0.928 | 0925 | 0.922 050 | 0798 | 0.790 | 0.784 | 0.780 | 0.777 ] o for f,=240 N/mm’ a=0.6
055 | 0898 | 0891 | 0887 | 0.883 | 0.881 0.55 | 0765 | 0.756 | 0.750 | 0.746 | 0.743 0.36 = mee Y 2 y,
060 | 0863 | 0.856 | 0.851 | 0.847 | 0.845 060 | 0737 | 0727 { 0721 | 0717 | 0.713 O Omax for £,=280 N/mm, Ve
065 § 0833 | 0.825 | 0.819 | 0.816 | 0.813 065 | 0712 | 0.702 | 0.695 { 0.690 | 0.687 0.34 1 Opma o1 £y =360 N/mm” /
070 | 0805 | 0797 | 0792 | 0788 | 0.785 0.70 | 0690 | 0679 | 0672 | 0.667 | 0.664 | L o for £, =400 N/mm® 7w =05
075 | 0781 | 0.772 | 0.767 | 0.763 | 0.760 0.75 | 0670 | 0659 | 0652 | 0.647 | 0.643 0.32 A max T Y 4)
080 | 0759 | 0.750 | 0.744 | 0.740 | 0.737 0.80 | 0852 | 0641 | 0633 | 0.628 | 0.624 Ve
085 | 0739 | 0730 | 0724 | 0719 | 0716 0.85 0.624 | 0617 | 0.611 | 0.607 0.30 /
090 | 0721 | 0711 | 0705 | o701 | 0.697 0.90 0.610 | 0.601 | 0.596 | 0.592
095 | 0705 | 0.694 | 0.688 | 0.683 | 0.680 0.95 0.596 | 0.588 | 0.582 | 0.577 0.28
100 | 0690 | 0679 | 0672 | 0667 | 0.664 1.00 0584 | 0.575 | 0.569 | 0.564 »
1.05 | 0676 | 0665 | 0658 | 0.653 | 0649 1.05 0.572 | 0563 | 0.557 | 0.552 0.26 /M k04
1.10 | 0663 | 0.651 | 0.644 | 0.639 | 0635 1.10 0552 | 0546 | 0.541 /4
115 | 0.651 | 0639 | 0632 | 0.626 | 0.623 1.15 0.542 | 0.535 | 0.531 0.24
1.20 | 0.640 | 0628 | 0.620 | 0.614 | 0611 1.20 0533 | 0.526 | 0.521
1.25 0.629 | 0.617 | 0.609 | 0.603 | 0.599 1.25 0524 | 0.517 | 0512 0.22 o0.3
1.30 | 0.620 | 0.607 | 0.599 | 0503 | o589 1.30 0.516 | 0508 | 0.503 )
135 | 0611 | 0597 | 0589 | 0583 | 0579 1.35 0.501 | 0.495 0.20
1.40 0.602 | 0.588 | 0.580 | 0.574 | 0569 1.40 0.493 | 0.488 oF0.9
145 0.580 | 0.571 | 0.565 | 0.561 1.45 0.486 | 0.480 0.18
1.50 0.572 | 0563 | 0557 | 0.552 1.50 0.480 | 0.474 =0l
1.55 0.565 | 0.555 | 0.549 | 0.544 1.55 0.467 0.16
1.60 0.558 | 0548 | 0542 | 0.537 1.60 0.461
1.65 0.551 | 0.541 | 0534 | 0530 1.65 0.456 044 : —
170 0.545 | 0535 | 0528 | 0523 1.70 0.450 : d=0
1.75 0539 | 0528 | 0521 | 0516 2
1.80 ) 0.522 | 0515 | 0510 01
1.85 0517 | 0.509 | 0.504
1.90 0511 | 0.504 | 0.498 0.10
1.95 0.506 | 0.498 | 0493
2.00 0501 | 0.493 | 0488 0.08 1
2.05 0.496 | 0.488 | 0.483 1-Assume i (0.5-1%) , © © Q
2.10 0492 | 0484 | 0478 2-From the table determine K, 0.06 :o__c', § o ©® 2 o 38 Y 8 P RS 8 8 Sf g i g g ‘é’,
2.15 0479 | 0473 3-Determine the beam depth d =TS S 5 c oo o S o 9 9 9
2.20 0.475 | 0.469 _ e o ° L d
2.25 0.470 | o0.464 Y] u > ® Al
2.30 0466 | 0.460 d=K, =+  A={5bd* M| ¥ s
b £ty y
2.35 0.463 | 0.456
240 0.459 | 0.452 C
2.45 0.455 | 0.449 (
2.50 : 0.445
255 4 0.442 As
2.60 0.438 ——
265 0.435 Incase P=0, A\ =ax4, b
2.70 ) ) 0.432
. 399 400
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SUBEJCED TO SIMPLE BENDING.
All types of steel (table 4-1). d’/d=0.10

DESIGN CHART FOR DOUBLY REINFORCED SECTIONS

Ri= &

b
o
2

0.38

4

1 1 1 1 i X

0.36 1+

0.34 4

boel m

0.32 4

Oy for £,=240 N/mm?

Oy TOF £, =280 N/mm’

" 050.6

Wy for £, =360 N/mm®
O for £, =400 N/mm”

0.30

A =0

0.28.

\N
N

0.26

0.24

0.22

0.20

0.18

0.16

0.14

b=011

0.12

0
0.10

In case P,=0,

ans

%
3

A

Ghoneim & El-Mihiimy

Design of Reinforced Concrete Structures

All types of steel (Table 4-1). d'/d=0.05

DOUBLY REINFORCED SECTIONS SUBEJCED TO SIMPLE BENDING

pi = Mo o :
Ju b Tq=00 | a=0.1 0=02 [0=03]a=04] a=05
0.01 0.012 0.012 0.012 0.012 0.012 0.012
0.02 0.023 0.023 0.023 0.024 0.024 0.024
0.03 0.036 0.036 0.036 0.036 0.036 0.036
0.04 0.048 0.048 0.048 0.048 0.048 0.048
0.05 0.061 07061 0.060 0.060 0.060 0.060
0.06 0.074 0.073 0.073 0.072 0.072 0.072
0.07 0.088 0.087 0.086 0.085 0.085 0.084
0.08 0.102 0.100 0.099 0.098 0.097 0.097
0.09 0.117 0.114 0.112 0.111 0.110 0.109
0.10 0.132 0.128 0.126 0.124 0.123 0.122
0.11 0.147 0.143 0.140 0.137 0.136 0.134
012 |400 0.164 0.158 0.154 0.151 0.149 0.147
0.13  |360 0.181 0.174 0.169 0.165 0.162 0.160
014  |240/280| 0.199 |360/400{ 0.190 0.184 0.179 0.175 0.172
0.15 0221} 280 |0.207 0.199 0.193 0.189 0.185
016’ 240 | 0.225 {360/400{ 0.215 0.207 0.202 0.198
0.17 0.231 0.222 0.216 0.212
0.18 240/280} 0.247 | 400 | 0.237 0.230 0.225
0.19 0.265 | 360 0.252 | 0.244 0.238 |
0.20 ) 280 | 0.268 0.258 0.252
021 240] 0.284 0.273 0.265
0.22 4001} 0.288 0.279
0.23 360 0.302 0.292
0.24 280 0.317 0.306
0.25 2401 0.333 0.320
0.26 400 | 0.334
0.27 . 0.349
0.28 360 | 0.363
0.29 0.377
0.30 280 | 0.392
0.31 240 | 0.407

i
Ri= M, o = Huwn_ f.v M T *
fubd® " 1-a f,
A\,:a)bdﬁi—P"— A'Zawbd_st
' S Ly, ’ . S A,
Incase P;=0, A4 =axA4.
. - b
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Eable C: Design of doubly reinforced section for different d'/d ratios ,J
DOUBLY REINFORCED SECTIONS SUBEJCED TO SIMPLE BENDING M
All types of steel (Table 4-1). d'/d=0.10 : o P Rl “Jbd” T T
Nim d'd=0.95 d'ld=0.075” dl‘ld=0‘.1 d'1d=0.15 d'/d=0.175{ (fy,d'ld,:::u;;x) oo
7] ) ' 1o a3 | otes ] |2 from the table g¢! 0.8
lm: f b [ o= 0.0 o=0.1 =02 |a=03]a=04]a=05 : 005 | o1s2 | o1s2 | 0152 3;?:::.:::2“3“0““
0.01 0.012 0.012 0.012 0.012 0.012 0.012 g oz26 | o010 | o162 | 0162 | 0161
0.02 ' 0.023 0.024 0.024 0.024 0.024 0.024 ) 0242 } 015 | 0473 | 0.172 2::2
0.03 0.036 0.036 0.036 0.036 0.036 0.036 o P ‘;2‘; 21223 2:22 o107
0.04 0.048 0.048 0.048 0.048 0.049 0.049 : > 22:‘; oo | oz | oz | o212 o
0.05 0.061 0.061 0.061 0.061 0.061 0.061 0316 | 035 | o295 | 0232 | 0230 R, =T%"§?
0.06 0.074 0.074 0.074 0.074 0.074 0.074 3z 0342 | 040 0.256 0.253 0.250 e P
0.07 0.088 0.087 0.087 0.087 0.087 0.087 0.374 | 045 0.282 0.278 0.275 Agx = Patrn —j—i’y’—b d
0.08 0.102 0.101 0.100 0.100 0.099 0.099
0.09 0.117 0.115 0.114 0.113 0.112 0.112 A= Ay
0.10 0.132 0.129 0.128 0.126 0.125 0.125
0.11 0.147 0.144 0.142 0.140 0.139 0.138
012|400 0.164 0.159 0.156 0.154 0.152 0.151
013 {60 |o0.181 0.175 0.171 0.168 0.166 0.164 ; & L e N
0.14  |240/280] 0.199 | 360/400} 0.192 0.186 0.182 0.179 0177 5 wo | T )
0.15 280 |0.208 0.202 0.197 0.193 0.191 4
0.16 240 | 0.226 }400/360} 0.218 0.211 0.207 0.204
0.17 280 |0.234 0.227 0.221 0.218 . Auamer
0.18 240 | 0.251 | 400 | 0.242 0.236 0.231 —
0.19 360 [ 0.258 0.250 0.245
0.20 280 0.274 0.265 0.259
0.21 . 240 0.290 | 400 | 0.280 0.273
0.22 360 | 0.295 0.287
0.23 0.311 0.302 &
0.24 2801 0.326 0.316 :
0.25 2401 0.341 0.330
0.26 400 0.345
0.27 360 | 0.360
322 280 zz;z 0.181 0.05 0.132 0.132 0.132 0.131 - z:z; E:;}
0492 | 010 | 0140 | 0140 | 07140 0.139 0. B
0% 2401 04% 0203 ] 045 | 0150 | o149 | 0148 | 0147 | 0146 g
4 ! A 0216 | 020 | 0.160 0.159 0.158 :11: Z~::Z %
0.171 0.170 . - ®
RI= %udj D = 1#__“2 }(_y y T d ?):ziz 2:22 ?{.:Z 0.184 0.182 0,179 0.178 %
o - 0.265 0.35 0.201 0.199 0.197 0.193 0.181 %
A =wbd Qi"f"—‘ A=awbd S 0287 | 040 | 0220 0.217 0.215 0.210 0.207 5
L i : I A 0313 | 045 | 0241 | 0238 | 0235 0.222 gziz
Incase P=0, 4! =ax A4, - 0245 | 050 0.267 0.263 0.260 0.2 .

anl
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Units Conversion Table

To transform from To Multiply by
SI-units French -units factor
Concentrated loads
IN kg 0.1
1 kN kg 100
1 kN ton 0.1
Linear Loads /m/

1 kKN/m’ t/m’ 0.1
Uniform Loads /m?
KN/m? t/m” 0.1

N/m” kg/m’ 0.1
KN/m” kg/m’ 100
Stress
N/mm’ (=1 MPa) kg/cm’ 10
kN/m” kg/cm’ 0.01
KN/m” ton/m" 0.1

' Density
N/m’ kg/m’ 0.1
KN/m® ton/m> 0.1
KN/m® kg/m’ 100
Moment .
kN.m | ton.m 0.1
N.mm kg.cm 0.01
Area :

m’ cm’ 10000
mm? cm’ 0.01
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Features

= Reflects the very latest Egyptian Code provisions (ECP 203 - 2007)
and includes all major changes and additions.

= Numerous illustrations and figures for each topic.

= Good theoretical background for each topic with code provisions.

= Extensive examples in each chapter utilizing Sl units.

= All examples are worked out step by step ranging from
simple to advanced.

= Full reinforcement details for every example.

= Numerous design charts for sections subjected to flexure.

This volume covers the following topics:

® Reinforced Concrete Fundamentals

® Design of Singly Reinforced Sections

® Design of Doubly Reinforced Sections

® Design of T-Beams

® Bond and Development Length

® Design for Shear

® Design of Simple and Continuous Beams
® Design for Torsion

® Design for Combined Shear and Torsion
® Truss Models for R/C Beams
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